首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   353篇
  免费   17篇
  国内免费   207篇
  2024年   1篇
  2023年   35篇
  2022年   19篇
  2021年   28篇
  2020年   14篇
  2019年   18篇
  2018年   14篇
  2017年   15篇
  2016年   14篇
  2015年   13篇
  2014年   26篇
  2013年   28篇
  2012年   16篇
  2011年   17篇
  2010年   20篇
  2009年   38篇
  2008年   36篇
  2007年   25篇
  2006年   23篇
  2005年   11篇
  2004年   20篇
  2003年   21篇
  2002年   15篇
  2001年   12篇
  2000年   13篇
  1999年   11篇
  1998年   14篇
  1997年   4篇
  1996年   3篇
  1995年   4篇
  1994年   9篇
  1993年   9篇
  1992年   6篇
  1991年   9篇
  1990年   8篇
  1989年   3篇
  1988年   1篇
  1987年   1篇
  1985年   3篇
排序方式: 共有577条查询结果,搜索用时 484 毫秒
21.
制备并研究了炭接枝CuCl2-乙二胺络合物罗丹明B溶液的性能.考察了催化剂在不同用量、不同温度、不同pH值的情况下对催化降解染料罗丹明B的影响。其结果表明:在70℃和pH为9.0时,催化剂(10mg)能够有效地催化降解罗丹明B溶液,连续循环催化降解2次,罗丹明B的降解率达到90%以上。  相似文献   
22.
酮还原酶CgKR2能够一步还原前手性羰基化合物生成高附加值的手性醇,有望解决手性醇传统制备方法的步骤烦琐和高成本问题,具有很高的经济效益。研究表明,CgKR2催化底物2-氧代-4-苯基丁酸乙酯(OPBE)生成普利类降压药的重要中间体(R)-2-羟基-4-苯基丁酸乙酯[(R)-HPBE]具有良好效果。但CgKR2的生产成本高昂、过程烦琐。利用短短芽孢杆菌胞外分泌表达酮还原酶CgKR2,获得该酶的高效表达,并经简便的一步镍亲和层析纯化,即获得高纯度酮还原酶CgKR2,产率高达每升发酵7. 8mg纯酶。以酶标板法测定其比活力、温度稳定性以及动力学参数等基本酶学性质,结果显示,CgKR2的比活力为(78. 32±7. 62) U/mg、Km为(0. 2±0. 02) mmol/L、Vmax为(117. 64±3. 6)μmol/(min·mg)、Kcat为73s-1,与以往报道的数据一致,并且获得的CgKR2纯酶在30℃下孵育72h依然保持80%的活性,酶活的稳定性远好于以往的制备方法。开发出的一套简便高效的酮还原酶CgKR2表达纯化工艺,降低了生产成本、简化了生产工艺,可推进手性醇生物催化制备的普及,对其他生物催化工程酶的制备方法研究也有借鉴作用。  相似文献   
23.
酮戊二酸(α-ketoglutaric acid,α-KG)是谷氨酸脱氨基的酮酸产物,作为一种重要的有机酸广泛用于食品、医药、精细化工等领域。为提高L-氨基酸脱氨酶全细胞催化法合成α-KG的效率及产量,首先通过优化全细胞催化剂制备条件及全细胞转化反应条件,包括发酵过程中的温度、诱导剂浓度、诱导剂添加时刻、诱导时间等;全细胞转化过程中的温度、pH、细胞量、转化时间。各个条件优化后以200g/L谷氨酸钠为底物时,产量最终提高了54. 9%,摩尔转化率为39. 6%。其次,通过定点饱和突变对L-氨基酸脱氨酶进行定向进化以提高其催化能力。经过多次突变、筛选,最优突变体E. coli BL21-pET-20b(+)-pm1152催化200g/L谷氨酸钠生成α-KG最高产量为100. 9g/L,摩尔转化率为64. 7%,较最初对照菌株提高了66. 3%。结果表明,条件优化和饱和突变可有效提高重组大肠杆菌全细胞转化合成α-KG的能力。  相似文献   
24.
目的:丝裂原活化蛋白激酶(Mitogen-activated Protein Kinases, MAPKs)是细胞内重要的信号传导通路,双位点特异性磷酸酶(Mitogen-activated Protein Kinase Phosphatases, MKPs)去磷酸化MAPKs,负调控MAPKs的信号传递。在MKPs去磷酸化MAPKs的过程中,MAPKs同时会激活部分MKPs的催化能力,MKP1便是其中之一。本文旨在比较三种经典MAPKs底物,ERK2、JNK1和p38α对MKP1磷酸酶催化能力的激活效果,进一步理解MAPKs与MKP1的底物特异性机制。方法:以p NPP为底物,检测在不同浓度的非磷酸化ERK2、JNK1和p38α存在下,MKP1-CD催化结构域片段蛋白质去磷反应速度的变化,对比所得的动力学参数以确定MAPKs对MKP1激活程度的差异。结果:ERK2和JNK1能够激活MKP1的催化活力,将催化速率提升1.5~2倍,而ERK2与MKP1的结合力比JNK1弱约6倍;p38α则没有观察到对MKP1去磷酸化能力的激活效果。结论:三种经典MAPKs中,ERK2和JNK1能够激活MKP1催化活力,而p38α则无法激活MKP1,进一步揭示了MAPKs和MKPs间的特异性相互作用,以及底物对MKPs活力的影响。  相似文献   
25.
代谢工程作为通过引入外源合成途径或改造优化代谢网络,进行高附加值的天然代谢产物生物合成的技术,已经得到广泛应用。但随着目标合成产物的结构日渐复杂,构建多基因的从头合成途径造成宿主生物代谢失衡与中间产物对宿主细胞产生毒害作用等一系列问题发生的可能性也随之增加。为解决这些问题合成支架策略应运而生,合成支架将途径酶共定位以提高局部酶和代谢物的浓度,来增强代谢通量并限制中间产物与宿主细胞环境间的相互作用,成为生物催化和合成生物学研究的热点之一。尽管由核酸、蛋白质构成的合成支架策略已经应用于多种代谢物的异源合成,并取得了不同程度的成功,但合成支架的精确组装仍然是一项艰巨的任务。文中详细介绍了合成支架技术的研究现状,详细阐述了合成支架技术的原理和实例,并初步探讨了其应用前景。  相似文献   
26.
人参皂苷单体定向转化的生物催化及应用进展   总被引:2,自引:0,他引:2  
人参是我国传统中药,药效显著、应用广泛。通过定向修饰与转化人参皂苷糖基可产生高抗癌活性稀有人参皂苷。传统化学法由于制备工艺极其复杂、成本过高,不能应用于临床,微生物及其酶系转化成为解决该瓶颈问题的最可行手段。有关全细胞催化、糖苷酶重组表达、固定化及其催化分子识别机制和溶剂工程的生物转化已有大量综述报道,但尚无在人参皂苷转化应用中的系统研究。文中通过对人参皂苷单体生物转化理论和应用研究最新进展的回顾,结合目前广泛采用的生物催化方法的讨论,系统梳理归纳了能够改善产物专一性、提高催化效率,且具有工业应用前景的人参皂苷单体定向转化方法。基于酶分子设计以及离子液体溶剂工程,对人参皂苷单体抗癌药物和食品、保健品市场的开发、规模化制备进行了展望。  相似文献   
27.
酶在工业上有着广泛应用和巨大潜力,但工业生产中高温、强酸/碱、高盐、有机溶剂和高底物浓度等条件仍然制约着酶的大规模应用。为使酶能更好地在工业环境下发挥催化作用,目前的主要策略是对酶进行适应性改造(如理性或半理性设计、定向进化、固定化等)。文中简要阐述了酶在工业环境下的催化行为以及近年对其适应性改造的研究进展,以期为酶的适应性改造提供参考。  相似文献   
28.
1,3-1,4-β-葡聚糖酶(E.C.3.2.1.73)是一种重要的工业用酶,其可以通过特异性切割毗邻β-1,3-糖苷键的β-1,4-糖苷键将β-葡聚糖或地衣多糖降解为纤维三糖和纤维四糖。微生物β-葡聚糖酶属于糖苷水解酶家族16,其三维结构为卷心蛋糕状的逆向β-片层结构。文中综述了近些年来β-葡聚糖酶在工业上的应用情况及酶蛋白质工程改造的研究进展,并对其研究前景进行了展望。  相似文献   
29.
以轻质芳烃苯、甲苯、二甲苯以及萘(BTXN)为目的产物,采用双颗粒流化床对松木进行了催化热分解实验。讨论了催化剂CoMo-B加氢催化作用下,静止床高、流化气速、床层压降的相互关系,得到了一个合适的操作条件,为热分解实验提供了必要的基础实验数据。在热分解实验中,调查了操作气速、床层高度以及热解温度对产物收率和分布的影响,得到了中间产物苯、甲苯、二甲苯和萘等轻质芳烃化合物最高收率为6.3%下的最佳操作条件:催化剂为CoMo-B,气速2.0cm/s,床层高度为0.08m,热解温度863K。  相似文献   
30.
巴洛沙星的合成研究   总被引:4,自引:0,他引:4  
合成新型抗菌药——巴洛沙星。以3-溴吡啶为原料,在催化剂作用下经氨解、加氢还原制备关键中间体3-甲胺基哌啶,并考察加氢过程中催化剂类型和反应温度的影响,再以甲氧环合酯(1-环丙基-6,7-二氟-8-甲氧基-1,4二氢-4-氧代喹啉-3-羧酸乙酯)为起始物,在乙酐中与硼酸螯合,并与3-甲胺基哌啶缩合,最后水解制备巴洛沙星。合成巴洛沙星的总质量收率58.7%,合成3-甲胺基哌啶的质量收率为74.1%。使用乙腈作为缩合的溶剂和后期水解反应的碱性物质,改进合成巴洛沙星的路线,提高了收率;制备3-甲胺基哌啶的加氢反应,在选择Rh/C为催化剂、反应温度为80℃时,质量收率为78%。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号