首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   42760篇
  免费   17283篇
  国内免费   3篇
  2023年   6篇
  2022年   23篇
  2021年   439篇
  2020年   2790篇
  2019年   4312篇
  2018年   4587篇
  2017年   4570篇
  2016年   4270篇
  2015年   4133篇
  2014年   4033篇
  2013年   4382篇
  2012年   3800篇
  2011年   3957篇
  2010年   3458篇
  2009年   2276篇
  2008年   2435篇
  2007年   1857篇
  2006年   1866篇
  2005年   1557篇
  2004年   1229篇
  2003年   1338篇
  2002年   1144篇
  2001年   853篇
  2000年   414篇
  1999年   249篇
  1998年   1篇
  1997年   9篇
  1996年   9篇
  1995年   11篇
  1994年   7篇
  1993年   14篇
  1992年   13篇
  1991年   1篇
  1989年   1篇
  1988年   1篇
  1977年   1篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
251.
There are many different types of cardiovascular diseases, which impose a huge economic burden due to their extremely high mortality rates, so it is necessary to explore the underlying mechanisms to achieve better supportive and curative care outcomes. Sphingosine 1‐phosphate (S1P) is a bioactive lipid mediator with paracrine and autocrine activities that acts through its cell surface S1P receptors (S1PRs) and intracellular signals. In the circulatory system, S1P is indispensable for both normal and disease conditions; however, there are very different views on its diverse roles, and its specific relevance to cardiovascular pathogenesis remains elusive. Here, we review the synthesis, release and functions of S1P, specifically detail the roles of S1P and S1PRs in some common cardiovascular diseases, and then address several controversial points, finally, we focus on the development of S1P‐based therapeutic approaches in cardiovascular diseases, such as the selective S1PR1 modulator amiselimod (MT‐1303) and the non‐selective S1PR1 and S1PR3 agonist fingolimod, which may provide valuable insights into potential therapeutic strategies for cardiovascular diseases.  相似文献   
252.
Cardiac vascular microenvironment is crucial for cardiac remodelling during the process of heart failure. Sphingosine 1‐phosphate (S1P) tightly regulates vascular homeostasis via its receptor, S1pr1. We therefore hypothesize that endothelial S1pr1 might be involved in pathological cardiac remodelling. In this study, heart failure was induced by transverse aortic constriction (TAC) operation. S1pr1 expression is significantly increased in microvascular endothelial cells (ECs) of post‐TAC hearts. Endothelial‐specific deletion of S1pr1 significantly aggravated cardiac dysfunction and deteriorated cardiac hypertrophy and fibrosis in myocardium. In vitro experiments demonstrated that S1P/S1pr1 praxis activated AKT/eNOS signalling pathway, leading to more production of nitric oxide (NO), which is an essential cardiac protective factor. Inhibition of AKT/eNOS pathway reversed the inhibitory effect of EC‐S1pr1‐overexpression on angiotensin II (AngII)‐induced cardiomyocyte (CM) hypertrophy, as well as on TGF‐β‐mediated cardiac fibroblast proliferation and transformation towards myofibroblasts. Finally, pharmacological activation of S1pr1 ameliorated TAC‐induced cardiac hypertrophy and fibrosis, leading to an improvement in cardiac function. Together, our results suggest that EC‐S1pr1 might prevent the development of pressure overload‐induced heart failure via AKT/eNOS pathway, and thus pharmacological activation of S1pr1 or EC‐targeting S1pr1‐AKT‐eNOS pathway could provide a future novel therapy to improve cardiac function during heart failure development.  相似文献   
253.
Myocardial infarction (MI) remains the leading cause of morbidity and mortality worldwide, and novel therapeutic targets still need to be investigated to alleviate myocardial injury and the ensuing maladaptive cardiac remodelling. Accumulating studies have indicated that lncRNA H19 might exert a crucial regulatory effect on cardiovascular disease. In this study, we aimed to explore the biological function and molecular mechanism of H19 in MI. To investigate the biological functions of H19, miRNA‐22‐3p and KDM3A, gain‐ and loss‐of‐function experiments were performed. In addition, bioinformatics analysis, dual‐luciferase reporter assays, RNA immunoprecipitation (RIP) assays, RNA pull‐down assays, quantitative RT‐PCR and Western blot analyses as well as rescue experiments were conducted to reveal an underlying competitive endogenous RNA (ceRNA) mechanism. We found that H19 was significantly down‐regulated after MI. Functionally, enforced H19 expression dramatically reduced infarct size, improved cardiac performance and alleviated cardiac fibrosis by mitigating myocardial apoptosis and decreasing inflammation. However, H19 knockdown resulted in the opposite effects. Bioinformatics analysis and dual‐luciferase assays revealed that, mechanistically, miR‐22‐3p was a direct target of H19, which was also confirmed by RIP and RNA pull‐down assays in primary cardiomyocytes. In addition, bioinformatics analysis and dual‐luciferase reporter assays also demonstrated that miRNA‐22‐3p directly targeted the KDM3A gene. Moreover, subsequent rescue experiments further verified that H19 regulated the expression of KDM3A to ameliorate MI‐induced myocardial injury in a miR‐22‐3p‐dependent manner. The present study revealed the critical role of the lncRNAH19/miR‐22‐3p/KDM3A pathway in MI. These findings suggest that H19 may act as a potential biomarker and therapeutic target for MI.  相似文献   
254.
255.
Acute myeloid leukaemia (AML) remains a therapeutic challenge and improvements in chemotherapy are needed. 4‐Amino‐2‐trifluoromethyl‐phenyl retinate (ATPR), a novel all‐trans retinoic acid (ATRA) derivative designed and synthesized by our team, has been proven to show superior anticancer effect compared with ATRA on various cancers. However, its potential effect on AML remains largely unknown. Lactate dehydrogenase B (LDHB) is the key glycolytic enzyme that catalyses the interconversion between pyruvate and lactate. Currently, little is known about the role of LDHB in AML. In this study, we found that ATPR showed antileukaemic effects with RARα dependent in AML cells. LDHB was aberrantly overexpressed in human AML peripheral blood mononuclear cell (PBMC) and AML cell lines. A lentiviral vector expressing LDHB‐targeting shRNA was constructed to generate a stable AML cells with low expression of LDHB. The effect of LDHB knockdown on differentiation and cycle arrest of AML cells was assessed in vitro and vivo, including involvement of Raf/MEK/ERK signalling. Finally, these data suggested that ATPR showed antileukaemic effects by RARα/LDHB/ ERK‐glycolysis signalling axis. Further studies should focus on the underlying leukaemia‐promoting mechanisms and investigate LDHB as a therapeutic target.  相似文献   
256.
257.
258.
259.
Long non‐coding RNAs (LncRNAs) and DNA methylation are important epigenetic mark play a key role in liver fibrosis. Currently, how DNA methylation and LncRNAs control the hepatic stellate cell (HSC) activation and fibrosis has not yet been fully characterized. Here, we explored the role of antisense non‐coding RNA in the INK4 locus (ANRIL) and DNA methylation in HSC activation and fibrosis. The expression levels of DNA methyltransferases 3A (DNMT3A), ANRIL, α‐Smooth muscle actin (α‐SMA), Type I collagen (Col1A1), adenosine monophosphate‐activated protein kinase (AMPK) and p‐AMPK in rat and human liver fibrosis were detected by immunohistochemistry, qRT‐PCR and Western blotting. Liver tissue histomorphology was examined by haematoxylin and eosin (H&E), Sirius red and Masson staining. HSC was transfected with DNMT3A‐siRNA, over‐expressing ANRIL and down‐regulating ANRIL. Moreover, cell proliferation ability was examined by CCK‐8, MTT and cell cycle assay. Here, our study demonstrated that ANRIL was significantly decreased in activated HSC and liver fibrosis tissues, while Col1A1, α‐SMA and DNMT3A were significantly increased in activated HSC and liver fibrosis tissues. Further, we found that down‐regulating DNMT3A expression leads to inhibition of HSC activation. Reduction in DNMT3A elevated ANRIL expression in activated HSC. Furthermore, we performed the over expression ANRIL suppresses HSC activation and AMPK signalling pathways. In sum, our study found that epigenetic DNMT3A silencing of ANRIL enhances liver fibrosis and HSC activation through activating AMPK pathway. Targeting epigenetic modulators DNMT3A and ANRIL, and offer a novel approach for liver fibrosis therapy.  相似文献   
260.
The PI3K/AKT pathway is frequently activated in endometrial carcinoma. BMI‐1 (B‐lymphoma Mo‐MLV insertion region 1) protein affects expression of PTEN (phosphatase and tensin homolog) in some cancers, but its significance for endometrial tumorigenesis is not known. The objective of this study was to determine the relationship between BMI‐1 and expression of factors affecting AKT (protein kinase B) phosphorylation level in endometrial cancer. The expression of proteins and mRNAs was investigated in endometrial cancer specimens and samples of non‐neoplastic endometrial tissue by Western blot and RT‐PCR, respectively. The impact of BMI‐1 down‐regulation on AKT phosphorylation and expression of genes coding for several phosphatases were studied in HEC1A cells. The results showed that BMI‐1 depletion caused increase in PHLPP1 and PHLPP2 (PH domain and leucine‐rich repeat protein phosphatases 1/2) expression and decrease in phospho‐AKT (pAKT) level. In more advanced tumours with higher metastatic potential, the expression of BMI‐1 was lower compared to tumours less advanced and without lymph node metastasis. There were significant inverse correlations between BMI‐1 and PHLPPs, especially PHLPP1 in normal endometrial samples. The inverse correlation between BMI‐1 and PHLPP1/PHLPP2 expression was observed in PTEN positive but not PTEN negative cancers. Low PHLPP2 expression in tumours predicted poorer overall survival. BMI‐1 impacts on AKT phosphorylation level in endometrial cells by regulation of PHLPP expression.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号