首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   311篇
  免费   31篇
  国内免费   5篇
  2024年   2篇
  2023年   8篇
  2022年   6篇
  2021年   7篇
  2020年   3篇
  2019年   11篇
  2018年   16篇
  2017年   3篇
  2016年   3篇
  2015年   5篇
  2014年   16篇
  2013年   22篇
  2012年   14篇
  2011年   22篇
  2010年   13篇
  2009年   9篇
  2008年   8篇
  2007年   38篇
  2006年   17篇
  2005年   11篇
  2004年   12篇
  2003年   7篇
  2002年   9篇
  2001年   4篇
  2000年   1篇
  1999年   8篇
  1998年   3篇
  1997年   5篇
  1996年   5篇
  1995年   2篇
  1994年   2篇
  1993年   2篇
  1992年   5篇
  1991年   3篇
  1990年   2篇
  1989年   2篇
  1988年   1篇
  1987年   3篇
  1986年   1篇
  1985年   5篇
  1984年   9篇
  1983年   1篇
  1982年   3篇
  1981年   5篇
  1980年   7篇
  1979年   1篇
  1977年   3篇
  1976年   1篇
  1974年   1篇
排序方式: 共有347条查询结果,搜索用时 15 毫秒
51.
Metal organic frameworks (MOFs) are considered as promising candidates for supercapacitors because of high specific area and potential redox sites. However, their shuffled orientations and low conductivity nature lead to severely‐degraded performance. Designing an accessibly‐manipulated and efficient method to address those issues is of outmost significance for MOF application in supercapacitors. It is the common way that MOFs scarify themselves as templates or precursors to prepare target products. But to reversely think it, using target products to prepare MOF could be the way to unlock the bottleneck of MOFs' performance in supercapacitors. Herein, a novel strategy using Co(OH)2 as both the template and precursor to fabricate vertically‐oriented MOF electrode is proposed. The electrode shows a double high specific capacitance of 1044 Fg?1 and excellent rate capability compared to MOF in powder form. An asymmetric supercapacitor was also fabricated, which delivers a maximum energy density of 28.5 W h kg?1 at a power density of 1500 W kg?1, and the maximum of 24000 W kg?1 can be obtained with a remaining energy density of 13.3 W h kg?1. Therefore, the proposed strategy paves the way to unlock the inherent advantages of MOFs and also inspires for advanced MOF synthesis with optimum performance.  相似文献   
52.
The molecular mechanism regulating dormancy release in grapevine buds is as yet unclear. It was formerly proposed that dormancy is maintained by abscisic acid (ABA)‐mediated repression of bud–meristem activity and that removal of this repression triggers dormancy release. It was also proposed that such removal of repression may be achieved via natural or artificial up‐regulation of VvA8H‐CYP707A4, which encodes ABA 8′‐hydroxylase, and is the most highly expressed paralog in grapevine buds. The current study further examines these assumptions, and its experiments reveal that (a) hypoxia and ethylene, stimuli of bud dormancy release, enhance expression of VvA8H‐CYP707A4 within grape buds, (b) the VvA8H‐CYP707A4 protein accumulates during the natural transition to the dormancy release stage, and (c) transgenic vines overexpressing VvA8H‐CYP707A4 exhibit increased ABA catabolism and significant enhancement of bud break in controlled and natural environments and longer basal summer laterals. The results suggest that VvA8H‐CYP707A4 functions as an ABA degrading enzyme, and are consistent with a model in which the VvA8H‐CYP707A4 level in the bud is up‐regulated by natural and artificial bud break stimuli, which leads to increased ABA degradation capacity, removal of endogenous ABA‐mediated repression, and enhanced regrowth. Interestingly, it also hints at sharing of regulatory steps between latent and lateral bud outgrowth.  相似文献   
53.
本文研究了棉铃虫雄蛾味刷中几种醇类物质对同种雄蛾行为反应的抑制效应。剂量范围从4×10-4到40μg的风洞剂量试验表明,当剂量为0.4μg,Z9-16∶Ald与Z11-16∶Ald两种混合物的比率为5∶95时,雄蛾有最高反应。当Z11-16∶OH加到上述混合物中,5%的醇浓度完全抑制定向行为。百分率进一步增加,不仅抑制定向行为,同时也影响起飞行为。将Z11-16∶OH与其他三种饱和醇14∶OH,16∶OH,18∶OH以及与结构上相似的Z9-16∶OH比较发现,Z11-16∶OH抑制雄蛾定向的行为最有效。田间施用Z11-16∶OH使其卵孵化率从处理前的34%降低到处理后的17%。  相似文献   
54.
55.
It is now well established that 1alpha,25(OH)2D3 is metabolized in its target tissues through the modifications of both side chain and A-ring. The C-24 oxidation pathway is the side chain modification pathway through which 1alpha,25(OH)2D3 is metabolized into calcitroic acid. The C-3 epimerization pathway is the A-ring modification pathway through which 1alpha,25(OH)2D3 is metabolized into 1alpha,25(OH)2-3-epi-D3. During the past two decades, a great number of vitamin D analogs were synthesized by altering the structure of both side chain and A-ring of 1alpha,25(OH)2D3 with the aim to generate novel vitamin D compounds that inhibit proliferation and induce differentiation of various types of normal and cancer cells without causing significant hypercalcemia. Previously, we used some of these analogs as molecular probes to examine how changes in 1alpha,25(OH)2D3 structure would affect its target tissue metabolism. Recently, several nonsteroidal analogs of 1alpha,25(OH)2D3 with unique biological activity profiles were synthesized. Two of the analogs, SL 117 and WU 515 lack the C-ring of the CD-ring skeleton of 1alpha,25(OH)2D3. SL 117 contains the same side chain as that of 1alpha,25(OH)2D3, while WU 515 contains an altered side chain with a 23-yne modification combined with hexafluorination at C-26 and C-27. Presently, it is unknown how the removal of C-ring from the CD-ring skeleton of 1alpha,25(OH)2D3 would affect its target tissue metabolism. In the present study, we compared the metabolic fate of SL 117 and WU 515 with that of 1alpha,25(OH)2D3 in both the isolated perfused rat kidney, which expresses only the C-24 oxidation pathway and rat osteosarcoma cells (UMR 106), which express both the C-24 oxidation and C-3 epimerization pathways. The results of our present study indicate that SL 117 is metabolized like 1alpha,25(OH)2D3, into polar metabolites via the C-24 oxidation pathway in both rat kidney and UMR 106 cells. As expected, WU 515 with altered side chain structure is not metabolized via the C-24 oxidation pathway. Unlike in rat kidney, both SL 117 and WU 515 are also metabolized into less polar metabolites in UMR 106 cells. These metabolites displayed GC and MS characteristics consistent with A-ring epimerization and were putatively assigned as C-3 epimers of SL 117 and WU 515. In summary, we report that removal of the C-ring from the CD-ring skeleton of 1alpha,25(OH)2D3 does not alter its target tissue metabolism significantly.  相似文献   
56.
Summary When fetal rat long bones are incubated in the presence of 10−8 M 1,25-dihydroxyvitamin D3 [1,25(OH)2D3], steady-state parathyroid hormone-related peptide (PTHrP) mRNA levels are decreased. This decrease is temporary: it is observed as soon as after 3 h of exposure and reaches a nadir after 6 h. At that time, PTHrP mRNA levels are significantly lower in the experimental than in the control bones. However the inhibitory effect vanishes after 24 h, despite continuous exposure to 1,25(OH)2D3 for even 48 h. This is the first report showing that PTHrP mRNA expression can be regulated in rat fetal long bones in vitro by 1,25(OH)2D3.  相似文献   
57.
58.
Demonstrating 1,25(OH)2D3-stimulated calcium uptake in isolated chick intestinal epithelial cells has been complicated by simultaneous enhancement of both uptake and efflux. We now report that in intestinal cells of adult birds, or those of young birds cultured for 72 h, 1,25(OH)2D3-stimulates 45Ca uptake to greater than 140% of corresponding controls within 3 min of addition. Such cells have lost hormone-stimulated protein kinase C (PKC) activity, believed to mediate calcium efflux. To further test this hypothesis, freshly isolated cells were preincubated with calphostin C, and calcium uptake monitored in the presence or absence of steroid. Only cells treated with the PKC inhibitor demonstrated a significant increase in 45Ca uptake in response to 1,25(OH)2D3, relative to corresponding controls. In addition, phorbol ester was shown to stimulate efflux, while forskolin stimulated uptake. To further investigate the mechanisms involved in calcium uptake, we assessed the role of TRPV6 and its activation by beta-glucuronidase. beta-Glucuronidase secretion from isolated intestinal epithelial cells was significantly increased by treatment with 1,25(OH)2D3, PTH, or forskolin, but not by phorbol ester. Treatment of cells with beta-glucuronidase, in turn, stimulated 45Ca uptake. Finally, transfection of cells with siRNA to either beta-glucuronidase or TRPV6 abolished 1,25(OH)2D3-enhanced calcium uptake relative to controls transfected with scrambled siRNA. Confocal microscopy further indicated rapid redistribution of enzyme and calcium channel after steroid. 1,25(OH)2D3 and PTH increase calcium uptake by stimulating the PKA pathway to release beta-glucuronidase, which in turn activates TRPV6. 1,25(OH)2D3-enhanced calcium efflux is mediated by the PKC pathway.  相似文献   
59.
Structure-functional characterization of vitamin D receptor (VDR) requires identification of structurally distinct areas of VDR-ligand-binding domain (VDR-LBD) important for biological properties of 1α,25-dihydroxyvitamin D3 (1,25(OH)2D3). We hypothesized that covalent attachment of the ligand into VDR-LBD might alter ‘surface structure’ of that area influencing biological activity of the ligand. We compared anti-proliferative activity of three affinity alkylating derivatives of 1,25(OH)2D3 containing an alkylating probe at 1,3 and 11 positions. These compounds possessed high-affinity binding for VDR; and affinity labeled VDR-LBD. But, only the analog with probe at 3-position significantly altered growth in keratinocytes, compared with 1,25(OH)2D3. Molecular models of these analogs, docked inside VDR-LBD tentatively identified Ser237 (helix-3: 1,25(OH)2D3-1-BE), Cys288 (β-hairpin region: 1,25(OH)2D3-3-BE,) and Tyr295 (helix-6: 1,25(OH)2D3-11-BE,) as amino acids that are potentially modified by these reagents. Therefore, we conclude that the β-hairpin region (modified by 1,25(OH)2D3-3-BE) is most important for growth inhibition by 1,25(OH)2D3, while helices 3 and 6 are less important for such activity.  相似文献   
60.
This study aimed to determine antiradical (DPPH? and ?OH) and acetylcholinesterase (AChE) inhibitory activities along with chemical composition of autochtonous fungal species Trametes versicolor (Serbia). A total of 38 phenolic compounds with notable presence of phenolic acids were identified using HPLC/MS-MS. Its water extract exhibited the highest antiradical activity against ?OH (3.21?μg/mL), among the rest due to the presence of gallic, p-coumaric and caffeic acids. At the concentration of 100?μg/mL, the same extract displayed a profound AChE inhibitory activity (60.53%) in liquid, compared to donepezil (89.05%), a drug in clinical practice used as positive control. The flavonoids baicalein and quercetin may be responsible compounds for the AChE inhibitory activity observed. These findings have demonstrated considerable potential of T. versicolor water extract as a natural source of antioxidant(s) and/or AChE inhibitor(s) to be eventually used as drug-like compounds or food supplements in the treatment of Alzheimer’s disease.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号