首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2068篇
  免费   16篇
  国内免费   53篇
  2137篇
  2024年   4篇
  2023年   42篇
  2022年   30篇
  2021年   50篇
  2020年   61篇
  2019年   78篇
  2018年   99篇
  2017年   53篇
  2016年   32篇
  2015年   19篇
  2014年   134篇
  2013年   245篇
  2012年   88篇
  2011年   145篇
  2010年   112篇
  2009年   98篇
  2008年   120篇
  2007年   113篇
  2006年   83篇
  2005年   90篇
  2004年   58篇
  2003年   45篇
  2002年   38篇
  2001年   3篇
  2000年   6篇
  1999年   2篇
  1998年   7篇
  1997年   4篇
  1996年   6篇
  1994年   5篇
  1993年   2篇
  1992年   2篇
  1991年   3篇
  1990年   4篇
  1987年   1篇
  1985年   17篇
  1984年   38篇
  1983年   29篇
  1982年   30篇
  1981年   20篇
  1980年   21篇
  1979年   21篇
  1978年   16篇
  1977年   11篇
  1976年   18篇
  1975年   7篇
  1974年   14篇
  1973年   9篇
  1972年   2篇
  1971年   1篇
排序方式: 共有2137条查询结果,搜索用时 0 毫秒
71.
Avian embryos are easily influenced by their environment during incubation. Previous studies have demonstrated that incubation temperature changes could influence muscle development and body weight, which subsequently determine the adult phenotype. The objective of this study was to investigate whether the development of immune organs in ducklings could be influenced by thermal manipulation during the middle stage of incubation. To evaluate this hypothesis, a control group was incubated under a normal temperature from E11 to E24, while the incubation temperature of the experimental group was increased by 1 °C. Our results indicated that slight changes in the incubation temperature significantly repressed the bursa of Fabricius index of the duck embryo on E25 (F1, 58=122.51, P<0.0001) and significantly repressed the spleen index of neonatal ducklings (F1, 58=74.38, P<0.0001). At 0 day posthatching (dph) and 14 dph, ducklings hatched from eggs incubated under the higher temperature had a lower percentage of globulin than the control group (F1, 10=19.97, P=0.0111; F1, 10=9.8, P=0.0352). The IFN-γ concentration of ducklings at 14 dph displayed the same trend (F1, 10=284.49, P<0.0001). These results suggested that thermal manipulation during the middle stage of incubation had a repressive effect on the development of immune organs and reduced the concentrations of serum globulin and IFN-γ. These results demonstrated that the subtle alteration of incubation temperature may weaken ducklings' immunity.  相似文献   
72.
Intramuscular fat (IMF) shortage causes the lack of juiciness and tenderness of goat meat, while peroxisome proliferator-activated receptor gamma 1 (PPARγ1) and gamma 2 (PPARγ2) play key roles in lipid metabolism. Nevertheless, their expression patterns and the relationship with IMF have been poorly exposed. Using quantitative polymerase chain reaction (qPCR), classical Soxhlet extraction, and in situ hybridization, we demonstrated that among 13 goat tissues, expression of PPARγ1 was dramatically higher than that of PPARγ2 except for lung. We further demonstrated the expression patterns of PPARγ1 and PPARγ2 and their negative association with intramuscular fat content in three goat muscles with kids growing. Meanwhile, PPARγ expression was located in the connective tissues. These results suggest that PPARγ1 is rather active for most tissues of goat, and closely related with the muscular fat metabolism during early postnatal life, but a more direct proof remains to be provided.  相似文献   
73.
Studies focusing on the association of gene methylthioadenosine phosphorylase (MTAP) with the risk of coronary artery disease (CAD) and myocardial infarction (MI) are limited.  相似文献   
74.
Genetic variants of IL-18 and IL-12B may be important in immunoregulatory abnormalities, observed in the patients with Type 1 diabetes mellitus (T1DM), that contribute to individual differences in response to a treatment. Therefore, we examined the significance of IL-18-137G/C, IL-18-607C/A, and IL-12B A/C polymorphisms in Croatians (187 patients, 236 controls), not only as factors that contribute to susceptibility to T1DM, but also as determinants of the clinical presentation of disease.  相似文献   
75.
76.
Hemocyanins are multimeric copper-containing hemolymph proteins involved in oxygen binding and transport in all major arthropod lineages. Most arachnids have seven primary subunits (encoded by paralogous genes ag), which combine to form a 24-mer (4 × 6) quaternary structure. Within some spider lineages, however, hemocyanin evolution has been a dynamic process with extensive paralog duplication and loss. We have obtained hemocyanin gene sequences from numerous representatives of the spider infraorders Mygalomorphae and Araneomorphae in order to infer the evolution of the hemocyanin gene family and estimate spider relationships using these conserved loci. Our hemocyanin gene tree is largely consistent with the previous hypotheses of paralog relationships based on immunological studies, but reveals some discrepancies in which paralog types have been lost or duplicated in specific spider lineages. Analyses of concatenated hemocyanin sequences resolved deep nodes in the spider phylogeny and recovered a number of clades that are supported by other molecular studies, particularly for mygalomorph taxa. The concatenated data set is also used to estimate dates of higher-level spider divergences and suggests that the diversification of extant mygalomorphs preceded that of extant araneomorphs. Spiders are diverse in behavior and respiratory morphology, and our results are beneficial for comparative analyses of spider respiration. Lastly, the conserved hemocyanin sequences allow for the inference of spider relationships and ancient divergence dates.  相似文献   
77.
The discovery of clinically relevant inhibitors of retinoic acid receptor-related orphan receptor-gamma-t (RORγt) for autoimmune diseases therapy has proven to be a challenging task. In the present work, to find out the structural features required for the inhibitory activity, we show for the first time a three-dimensional quantitative structure–activity relationship (3D-QSAR), molecular docking and molecular dynamics (MD) simulations for a series of novel thiazole/thiophene ketone amides with inhibitory activity at the RORγt receptor. The optimum CoMFA and CoMSIA models, derived from ligand-based superimposition I, exhibit leave-one-out cross-validated correlation coefficient (R2cv) of .859 and .805, respectively. Furthermore, the external predictive abilities of the models were evaluated by a test set, producing the predicted correlation coefficient (R2pred) of .7317 and .7097, respectively. In addition, molecular docking analysis was applied to explore the binding modes between the inhibitors and the receptor. MD simulation and MM/PBSA method were also employed to study the stability and rationality of the derived conformations, and the binding free energies in detail. The QSAR models and the results of molecular docking, MD simulation, binding free energies corroborate well with each other and further provide insights regarding the development of novel RORγt inhibitors with better activity.  相似文献   
78.
γ-secretase, which assembles as a tetrameric complex, is an aspartyl protease that proteolytically cleaves substrate proteins within their membrane-spanning domain; a process also known as regulated intramembrane proteolysis (RIP). RIP regulates signaling pathways by abrogating or releasing signaling molecules. Since the discovery, already > 15 years ago, of its catalytic component, presenilin, and even much earlier with the identification of amyloid precursor protein as its first substrate, γ-secretase has been commonly associated with Alzheimer's disease. However, starting with Notch and thereafter a continuously increasing number of novel substrates, γ-secretase is becoming linked to an equally broader range of biological processes. This review presents an updated overview of the current knowledge on the diverse molecular mechanisms and signaling pathways controlled by γ-secretase, with a focus on organ development, homeostasis and dysfunction. This article is part of a Special Issue entitled: Intramembrane Proteases.  相似文献   
79.
Hyperglycemia-induced oxidative stress leads to diabetes-associated damage to the microvasculature of the brain. Pericytes in close proximity to endothelial cells in the brain microvessels are vital to the integrity of the blood–brain barrier and are especially susceptible to oxidative stress. According to our recently published results, streptozotocin-diabetic mouse brain exhibits oxidative stress and loose pericytes by twelve weeks of diabetes, and cerebral pericytes cultured in high glucose media suffer intracellular oxidative stress and apoptosis. Oxidative stress in diabetes is hypothesized to be caused by reactive oxygen species (ROS) produced during hyperglycemia-induced enhanced oxidative metabolism of glucose (respiration). To test this hypothesis, we investigated the effect of high glucose on respiration rate and ROS production in mouse cerebral pericytes. Previously, we showed that pharmacological inhibition of mitochondrial carbonic anhydrases protects the brain from oxidative stress and pericyte loss. The high glucose-induced intracellular oxidative stress and apoptosis of pericytes in culture were also reversed by inhibition of mitochondrial carbonic anhydrases. Therefore, we extended our current study to determine the effect of these inhibitors on high glucose-induced increases in pericyte respiration and ROS. We now report that both the respiration and ROS are significantly increased in pericytes challenged with high glucose. Furthermore, inhibition of mitochondrial carbonic anhydrases significantly slowed down both the rate of respiration and ROS production. These data provide new evidence that pharmacological inhibitors of mitochondrial carbonic anhydrases, already in clinical use, may prove beneficial in protecting the brain from oxidative stress caused by ROS produced as a consequence of hyperglycemia-induced enhanced respiration.  相似文献   
80.
2,3-Dinorprostaglandins (dinor-PGs) have been regarded as β-oxidation products of arachidonic-acid-derived prostaglandins, but their biological activities in mammalian cells remain unclear. On the other hand, C18 polyunsaturated fatty acids (PUFAs), such as γ-linolenic acid (GLA), have various biological activities, and dinor-PGs are speculated to be biosynthesized from GLA. Here, we synthesized dinor-PGs that may possibly be derived from GLA and examined their activities towards peroxisome proliferator-activated receptors (PPARs). Dinor-PGD1 (1) and its epimer 13-epi-dinor-PGD1 (epi-1) were found to be dual agonists for PPARα/γ, whereas PGD2 derived from arachidonic acid is selective for PPARγ. Thus, GLA-derived dinor-PGs may have unique biological roles.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号