首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2021篇
  免费   16篇
  国内免费   53篇
  2024年   2篇
  2023年   42篇
  2022年   30篇
  2021年   49篇
  2020年   61篇
  2019年   78篇
  2018年   98篇
  2017年   53篇
  2016年   32篇
  2015年   19篇
  2014年   132篇
  2013年   244篇
  2012年   85篇
  2011年   142篇
  2010年   111篇
  2009年   96篇
  2008年   116篇
  2007年   111篇
  2006年   77篇
  2005年   87篇
  2004年   56篇
  2003年   45篇
  2002年   34篇
  2001年   2篇
  2000年   5篇
  1999年   2篇
  1998年   4篇
  1997年   3篇
  1996年   4篇
  1994年   4篇
  1993年   2篇
  1992年   2篇
  1991年   3篇
  1990年   4篇
  1987年   1篇
  1985年   17篇
  1984年   38篇
  1983年   28篇
  1982年   30篇
  1981年   20篇
  1980年   21篇
  1979年   21篇
  1978年   16篇
  1977年   11篇
  1976年   18篇
  1975年   7篇
  1974年   14篇
  1973年   9篇
  1972年   2篇
  1971年   1篇
排序方式: 共有2090条查询结果,搜索用时 312 毫秒
41.
目的: 探讨4周有氧运动对糖尿病大鼠血糖血脂的改善作用及其与PPARα和PPARγ的调控关系。方法: 6周龄雄性SD大鼠8周高脂饮食喂养后一次性腹腔注射链脲佐菌素以建立糖尿病模型大鼠。除普通膳食对照组(Con)外,建模成功的糖尿病大鼠随机分成糖尿病对照组(DM)、糖尿病运动组(TDM)、糖尿病运动加PPARγ激动剂吡格列酮组(TDP)和糖尿病运动加PPARγ抑制剂GW9662组(TDG),每组8只。TDP组和TDG组大鼠在运动前分别补充吡格列酮和GW9662,TDM、TDP和TDG组大鼠进行4周中等强度递增负荷跑台运动(第1周15 m/min,30 min;第2周15 m/min,60 min;第3周20 m/min,60 min;第4周20 m/min,90 min),每周运动6 d,每天1次。运动期间所有大鼠给予普通饲料。最后一次运动结束后36 h,大鼠麻醉、取血,然后处死大鼠、收集肝和腓肠肌。检测空腹血糖血脂指标(血糖、血胰岛素和血脂四项)。Western blot方法检测肝和腓肠肌PPARα、PPARα上游分子腺苷酸活化蛋白激酶(AMPK)和下游分子肉碱棕榈酰转移酶-1(CPT1)的蛋白水平。结果: ①与Con组大鼠比较,DM大鼠FBG(>11.1 mmol/L)和血清TC、TG、LDL水平显著升高(P均<0.01),表明DM造模成功。②与DM大鼠比较,TDM大鼠血糖血脂改善的同时,肝和腓肠肌PPARα、AMPK和CPT1的蛋白水平均显著升高(P均<0.01)。③与TDM大鼠比较,TDG大鼠肝和腓肠肌的PPARα和CPT1,以及肝AMPK的蛋白水平无显著变化(仅腓肠肌AMPK显著降低(P<0.05));而TDP大鼠的肝和腓肠肌PPARα、AMPK和CPT1蛋白水平均显著提高(P均<0.01)。结论: 有氧运动对DM大鼠血糖血脂的改善作用-与运动激活肝和腓肠肌的AMPK-PPARα-CPT1通路有关。运动对DM大鼠PPARα通路的激活与PPARγ无关,但PPARγ激活可进一步增强运动对AMPK-PPARα-CPT1蛋白水平上调的作用。  相似文献   
42.
微藻被看作第三代生物质能源的来源。微藻淀粉结构与高等植物的高度相似性使其可以作为粮食作物的替代,在生物能源领域有广泛的应用。γ-氨基丁酸(GABA)被认为是一种信号分子,可以调节植物细胞的生长代谢。本研究在缺氮培养条件下添加外源GABA调控海洋绿藻亚心形四爿藻生理代谢和淀粉积累。结果表明,添加外源GABA可以抑制细胞生长,降低光合作用效率;OJIP实验显示,GABA的添加增强了光合器官能量耗散,降低了光能利用效率,阻碍了电子传递,造成额外胁迫,从而促使细胞将碳流更多地分配到淀粉积累,导致藻细胞的淀粉含量、淀粉产量和淀粉产率提高。添加10 mmol/L GABA获得最大淀粉含量39%DW,比未添加GABA的对照组淀粉含量提高39%;同时获得最大淀粉产量和产率为1.72 g·L^-1和0.36 g·L^-1·d^-1,分别比未添加GABA的对照组提高39%和50%。以上结果表明在缺氮条件下添加外源GABA是一种调控亚心形四爿藻细胞代谢并提高其淀粉生产的有效方法。  相似文献   
43.
Previous studies identified the involvement of phosphoinositide-specific phospholipase C (PLC) γ1 in some events of chondrocytes. This study aims to investigate whether and how PLCγ1 modulates autophagy to execute its role in osteoarthritis (OA) progression. Rat normal or human OA chondrocytes were pretreated with IL-1β for mimicking or sustaining OA pathological condition. Using Western blotting, immunoprecipitation, qPCR, immunofluorescence and Dimethylmethylene blue assays, and ELISA and transmission electron microscope techniques, we found that PLCγ1 inhibitor U73122 enhanced Collagen II, Aggrecan and GAG levels, accompanied with increased LC3B-II/I ratio and decreased P62 expression level, whereas autophagy inhibitor Chloroquine partially diminished its effect. Meanwhile, U73122 dissociated Beclin1 from Beclin1-IP3R-Bcl-2 complex and blocked mTOR/ULK1 axis, in which the crosstalk between PLCγ1, AMPK, Erk and Akt were involved. Additionally, by haematoxylin and eosin, Safranin O/Fast green, and immunohistochemistry staining, we observed that intra-articular injection of Ad-shPLCγ1-1/2 significantly enhanced Collagen and Aggrecan levels, accompanied with increased LC3B and decreased P62 levels in a rat OA model induced by anterior cruciate ligament transection and medial meniscus resection. Consequently, PLCγ1 inhibition-driven autophagy conferred cartilage protection against OA through promoting ECM synthesis in OA chondrocytes in vivo and in vitro, involving the crosstalk between PLCγ1, AMPK, Erk and Akt.  相似文献   
44.
Background: The uptake and biotransformation of γ-tocopherol (γ-T) in humans is largely unknown. Using a stable isotope method we investigated these aspects of γ-T biology in healthy volunteers and their response to γ-T supplementation.

Methods: A single bolus of 100 mg of deuterium labeled γ-T acetate (d2-γ-TAC, 94% isotopic purity) was administered with a standard meal to 21 healthy subjects. Blood and urine (first morning void) were collected at baseline and a range of time points between 6 and 240 h post-supplemetation. The concentrations of d2 and d0-γ-T in plasma and its major metabolite 2,7,8-trimethyl-2-(b-carboxyethyl)-6-hydroxychroman (-γ-CEHC) in plasma and urine were measured by GC-MS. In two subjects, the total urine volume was collected for 72 h post-supplementation. The effects of γ-T supplementation on α-T concentrations in plasma and α-T and γ-T metabolite formation were also assessed by HPLC or GC-MS analysis.

Results: At baseline, mean plasma α-T concentration was approximately 15 times higher than γ-T (28.3 vs. 1.9 µmol/l). In contrast, plasma γ-CEHC concentration (0.191 µmol/l) was 12 fold greater than α-CEHC (0.016 µmol/l) while in urine it was 3.5 fold lower (0.82 and 2.87 µmol, respectively) suggesting that the clearance of α-CEHC from plasma was more than 40 times that of γ-CEHC. After d2-γ-TAC administration, the d2 forms of γ-T and γ-CEHC in plasma and urine increased, but with marked inter-individual variability, while the d0 species were hardly affected. Mean total concentrations of γ-T and γ-CEHC in plasma and urine peaked, respectively, between 0–9, 6–12 and 9–24 h post-supplementation with increases over baseline levels of 6–14 fold. All these parameters returned to baseline by 72 h. Following challenge, the total urinary excretion of d2-γ-T equivalents was approximately 7 mg. Baseline levels of γ-T correlated positively with the post-supplementation rise of (d0 + d2) – γ – T and γ-CEHC levels in plasma, but correlated negatively with urinary levels of (d0 + d2)-γ-CEHC. Supplementation with 100 mg γ-TAC had minimal influence on plasma concentrations of α-T and α-T-related metabolite formation and excretion.

Conclusions: Ingestion of 100mg of γ-TAC transiently increases plasma concentrations of γ-T as it undergoes sustained catabolism to CEHC without markedly influencing the pre-existing plasma pool of γ-T nor the concentration and metabolism of α-T. These pathways appear tightly regulated, most probably to keep high steady-state blood ratios α-T to γ-T and γ-CEHC to α-CEHC.  相似文献   
45.
《Free radical research》2013,47(2):215-228
It was investigated to what extent isolated, monomeric and polymeric carbohydrates as well as cartilage specimens are affected by hydroxyl radicals generated by γ-irradiation or Fenton reaction and what products can be detected by means of NMR spectroscopy. Resonances of all protons in glucose and other monosac-charides as well as carbon resonances in 13C-enriched glucose were continuously diminished upon γ-irradiation. Formate and malondialdehyde were found as NMR detectable products in irradiated glucose solutions under physiologically relevant (aerated) conditions. In polysaccharide solutions (e.g. hyaluronic acid) γ-irradiation and also treatment with the Fenton reagent caused first an enhancement of resonances according to mobile N-acetyl groups at 2.02 ppm. This indicates a breakdown of glycosidic bonds in polysac-charides. Using higher radiation doses or higher concentrations of the Fenton reagent formate was also detected. The same sequence of events was observed upon treatment of bovine nasal cartilage with the Fenton reagent. First, glycosidic linkages in cartilage polysaccharides were cleaved and subsequently formate was formed. In contrast, collagen of cartilage was affected only to a very low extent. Thus, HO-radicals caused the same action on cartilage as on isolated polymer solutions, inducing a fragmentation of polysaccharides and the formation of formate.  相似文献   
46.
《Free radical research》2013,47(7):842-849
Abstract

The current study was intended to evaluate the hepatoprotective effect of Epicatechin (EC) against radiation-induced oxidative stress, in terms of inflammation and lipid peroxidation. Swiss albino mice were administered with EC (15 mg/kg body weight) for three consecutive days before exposing them to a single dose of 5-Gy 60Co gamma (γ) irradiation. Mice were necropsied and livers were taken for immunohistochemistry, western blot analysis and biochemical tests for the detection of markers of hepatic oxidative stress. Nuclear translocation of nuclear factor kappa B (NF-κB) and lipid peroxidation were increased whereas the activities of superoxide dismutase (SOD) and catalase (CAT), reduced glutathione (GSH) content and ferric reducing antioxidant power (FRAP) were diminished upon radiation exposure compared to control. Translocation of NF-κB from cytoplasm to nucleus and lipid peroxidation were found to be inhibited whereas an increase in SOD, CAT, GSH and FRAP was observed in the mice treated with EC prior to irradiation. Thus, pre-treatment with EC offers protection against γ-radiation induced hepatic alterations.  相似文献   
47.
Abstract

The compound γ-aminobutyric acid (GABA) has many important physiological functions. The effect of glutamate decarboxylases and the glutamate/GABA antiporter on GABA production was investigated in Escherichia coli. Three genes, gadA, gadB, and gadC were cloned and ligated alone or in combination into the plasmid pET32a. The constructed plasmids were transformed into Escherichia coli BL21(DE3). Three strains, E. coli BL21(DE3)/pET32a-gadA, E. coli BL21(DE3)/pET32a-gadAB and E. coli BL21(DE3)/pET32a-gadABC were selected and identified. The respective titers of GABA from the three strains grown in shake flasks were 1.25, 2.31, and 3.98?g/L. The optimal titer of the substrate and the optimal pH for GABA production were 40?g/L and 4.2, respectively. The highest titer of GABA was 23.6?g/L at 36?h in batch fermentation and was 31.3?g/L at 57?h in fed-batch fermentation. This study lays a foundation for the development and use of GABA.  相似文献   
48.
Abstract

A series of nitrogen heterocycles containing α–ethoxyphenylpropionic acid derivatives were designed as dual PPARα/γ agonist ligands for the treatment of type 2 diabetes (T2D) and its complications. 6-Benzoyl-benzothiazol-2-one was the most tolerant of the tested heterocycles in which incorporation of O-methyl oxime ether and trifluoroethoxy group followed by enantiomeric resolution led to the (S)-stereoisomer 44?b displaying the best in vitro pharmacological profile. Compound 44?b acted as a very potent full PPARγ agonist and a weak partial agonist on the PPARα receptor subtype. Compound 44?b showed high efficacy in an ob/ob mice model with significant decreases in serum triglyceride, glucose and insulin levels but mostly with limited body-weight gain and could be considered as a selective PPARγ modulator (SPPARγM).  相似文献   
49.
Lysophosphatidylcholine (LPC) and lysophosphatidic acid (LPA), the most prominent lysoglycerophospholipids, are emerging as a novel class of inflammatory lipids, joining thromboxanes, leukotrienes and prostaglandins with which they share metabolic pathways and regulatory mechanisms. Enzymes that participate in LPC and LPA metabolism, such as the phospholipase A2 superfamily (PLA2) and autotaxin (ATX, ENPP2), play central roles in regulating LPC and LPA levels and consequently their actions. LPC/LPA biosynthetic pathways will be briefly presented and LPC/LPA signaling properties and their possible functions in the regulation of the immune system and chronic inflammation will be reviewed. Furthermore, implications of exacerbated LPC and/or LPA signaling in the context of chronic inflammatory diseases, namely rheumatoid arthritis, multiple sclerosis, pulmonary fibrosis and hepatitis, will be discussed. This article is part of a Special Issue entitled Advances in Lysophospholipid Research.  相似文献   
50.
Pulmonary surfactant is essential for life and is composed of a complex lipoprotein-like mixture that lines the inner surface of the lung to prevent alveolar collapse at the end of expiration. The molecular composition of surfactant depends on highly integrated and regulated processes involving its biosynthesis, remodeling, degradation, and intracellular trafficking. Despite its multicomponent composition, the study of surfactant phospholipid metabolism has focused on two predominant components, disaturated phosphatidylcholine that confers surface-tension lowering activities, and phosphatidylglycerol, recently implicated in innate immune defense. Future studies providing a better understanding of the molecular control and physiological relevance of minor surfactant lipid components are needed. This article is part of a Special Issue entitled Phospholipids and Phospholipid Metabolism.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号