首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   14684篇
  免费   316篇
  国内免费   262篇
  2023年   191篇
  2022年   204篇
  2021年   326篇
  2020年   369篇
  2019年   560篇
  2018年   484篇
  2017年   293篇
  2016年   297篇
  2015年   243篇
  2014年   801篇
  2013年   1403篇
  2012年   531篇
  2011年   819篇
  2010年   546篇
  2009年   650篇
  2008年   677篇
  2007年   734篇
  2006年   632篇
  2005年   548篇
  2004年   471篇
  2003年   386篇
  2002年   342篇
  2001年   170篇
  2000年   170篇
  1999年   153篇
  1998年   156篇
  1997年   138篇
  1996年   147篇
  1995年   138篇
  1994年   144篇
  1993年   117篇
  1992年   117篇
  1991年   127篇
  1990年   117篇
  1989年   110篇
  1988年   88篇
  1987年   66篇
  1986年   79篇
  1985年   189篇
  1984年   249篇
  1983年   173篇
  1982年   172篇
  1981年   161篇
  1980年   136篇
  1979年   103篇
  1978年   90篇
  1977年   90篇
  1976年   93篇
  1975年   78篇
  1973年   71篇
排序方式: 共有10000条查询结果,搜索用时 78 毫秒
41.
Summary In saltwater-acclimated ducks with fully specialized supraorbital salt glands, intracarotid application of acetylcholine (5 nmoles/min/kg b.w.) or porcine vasoactive intestinal polypeptide (pVIP) (240 pmoles/min/kg b.w.) induced secretion from the salt glands at threshold conditions of secretory activity. pVIP-like immunoreactivity could be localized in fibers of the postganglionic secretory nerve ramifying throughout the glandular parenchyma. Both middle-sized arterioles and secretory tubules were innervated, and pVIP-immunoreactive varicose fibers formed peritubular baskets around the basal region of secretory tubules indicating direct innervation of the secretory tissue. pVIP-specific staining could be abolished by preabsorption of the antiserum with peptide extracts of salt-gland tissue. Synthetic pVIP and endogenous VIP from salt glands of the duck co-eluted on the HPLC system, suggesting structural similarity of the peptides. Membrane-binding studies with radioiodinated pVIP revealed the presence of high-affinity binding sites in salt-gland tissue. Affinities of unlabeled pVIP analogues to compete for these binding sites were as follows: pVIP > PHI > pVIP antagonist > secretin > pVIP (10–28) > chicken VIP (16–28). Peptide extracts of salt glands had affinities similar to pVIP. Binding sites could be localized mainly at the apical end of the radially arranged secretory tubules, as demonstrated by receptor autoradiography.It is concluded that, in addition to the classical parasympathetic transmitter acetycholine, VIP serves as neuromodulator/transmitter in cranial parasympathetic control of avian salt-gland secretion by acting on both the arteriolar network and the secretory tubules of the gland.  相似文献   
42.
The presence and specificity of insulin receptors was investigated in cultured cells obtained from 15–16 days old embryonic mouse cerebra. Developmental studies suggested that the maximum insulin binding occurred at about 11 days in vitro (DIV). Scatchard analysis of binding data revealed two types of binding sites. One type of receptor was the high affinity type (K d=7.77×10–9 M; number of receptor sites,B max=350 fmol/mg protein) while the other type was of low affinity type (K d=5.75×10–8 M;B max=1150 fmol/mg protein). The specificity of receptors for insulin was also confirmed by showing that [125I]insulin was displaced by non-radioactive insulin but not by glucagon or growth hormone. Insulin displayed a clear dose-dependent stimulation of thymidine incorporation. It also stimulated the activity of the enzyme 2,3-cyclic nucleotide phosphohydrolase (CNPase), which is specifically associated with myelin produced from oligodendroglia. Thus insulin has a positive influence on the proliferation and differentiation of brain cells.  相似文献   
43.
The in vitro effects of Li on agonist- and depolarization-stimulated accumulation of inositol phosphates were determined in mouse cerebral cortex slices. Of the agents examined, only the cholinergic agonist carbachol produced a significant accumulation of inositol tetrakisphosphate (InsP4) in the absence of Li. Lithium at 5 mM enhanced the accumulation of inositol monophosphate (InsP1) and inositol bisphosphate (InsP2) due to all the stimuli used and potentiated inositol trisphosphate (InsP3) accumulation due to histamine and noradrenaline, although at lower Li concentrations, carbachol-stimulated InsP3 accumulation was reduced. Li also enhanced InsP4 accumulation in the presence of noradrenaline, histamine, and elevated KCl level but, in marked contrast, reduced carbachol-stimulated InsP4 accumulation with an IC50 of 100 microM. There was a significant time delay between the initiation of carbachol stimulation and the beginning of the InsP4 inhibition due to Li. The phorbol ester 4 beta-phorbol 12 beta-myristate 13 alpha-acetate did not mimic the effects of Li. The results suggest that muscarinic receptor-mediated InsP4 production might be one of the targets for the therapeutic action of Li.  相似文献   
44.
The specific binding protein for substance P (SP) was solubilized in an active form from the crude mitochondrial (P2) fraction of bovine brainstem. After incubation with 3-[(3-cholamidopropyl)dimethylammonio]-1-propane sulfonate (CHAPS) and 0.1 M NaCl at 0 degrees C for 30 min, the SP binding to the supernatant fraction (100,000 g, 60 min) was determined by the glass fiber filtration method reported by Bruns et al. (1983). The specific [3H]SP binding to the solubilized fraction was highly specific for SP and was displaced by nanomolar concentrations of SP and physalaemin, but only by micromolar concentrations of eledoisin. In addition, the binding was inhibited by GTP (approximately 40% of the specific binding decreased by 10 microM GTP) in both preparations. These results were virtually identical to those of P2 membrane preparations and suggested that this high-affinity SP binding site belongs to the SP-P type. Scatchard analyses of SP binding to the solubilized fraction revealed a single saturable component with a Bmax of 22.0 +/- 5.10 fmol/mg protein and a KD of 0.79 nM, and these values are almost the same as those obtained in the P2 fraction (Bmax = 31.3 +/- 3.56 fmol/mg protein, KD = 0.82 nM). Gel filtration analysis showed that the detergent-SP binding protein complex has two calculated molecular weights of greater than 1,000,000 and 55,000-60,000 (a corresponding Stokes radius of 35.5 nm).  相似文献   
45.
Peptide mapping can be used to elucidate further the structural similarities of the benzodiazepine binding proteins in different vertebrate species. Crude synaptic membrane preparations were photoaffinity-labeled with [3H]flunitrazepam and subsequently degraded with various concentrations of trypsin. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis followed by fluorography allowed a comparison of the molecular weights of photolabeled peptides in different species. Tryptic degradation led to a common peptide of 40K in all species investigated, a finding indicating that the benzodiazepine binding proteins are structurally homologous in higher bony fishes and tetrapods.  相似文献   
46.
The effect of dopamine receptor stimulation on the accumulation of labelled inositol phosphates in rat striatal slices under basal and stimulated conditions was examined following preincubation with [3H]inositol. Incubation of striatal slices with the selective D-1 agonist SKF 38393 or the selective D-2 agonist LY 171555 for 5 or 30 min did not affect the basal accumulation of labelled inositol mono-, bis-, tris-, and tetrakisphosphate. Resolution by HPLC of inositol trisphosphate into inositol-1,3,4-tris-phosphate and inositol-1,4,5-trisphosphate isomers revealed that under basal conditions dopamine did not influence the accumulation of inositol-1,4,5-trisphosphate. Depolarisation evoked by KCl, or addition of the muscarinic receptor agonist carbachol, produced a marked increase in the accumulation of labelled inositol phosphates in both the presence and absence of lithium. Addition of dopamine did not reduce the ability of KCl or carbachol to increase inositol phospholipid hydrolysis. In the presence of lithium, dopamine (100 microM) enhanced KCl-stimulated inositol phospholipid hydrolysis, but this effect appears to be mediated by alpha 1 adrenoceptors because it was blocked by prazosin. SKF 38393 (10 microM) or LY 171555 (10 microM) also did not affect carbachol-stimulated inositol phospholipid hydrolysis. These data, in contrast to recent reports, suggest that striatal dopamine receptors do not appear to be linked to inositol phospholipid hydrolysis.  相似文献   
47.
The effects of bradykinin (BK) and lithium on the phosphatidylinositol cycle were examined in PC12 cells cultured for 20 h in the presence [PC12(+)] or in the absence [PC12(-)] of nerve growth factor (NGF). BK (1 microM) induced a small stimulation of the incorporation of myo-[2-3H]inositol into the lipids of PC12(-) cells and a three- to fourfold stimulation of such incorporation into the lipids of PC12 (+) cells. About 15 h of incubation with NGF and greater than 10 min of incubation with BK were needed for maximal stimulation of inositol incorporation by BK. In the presence of 25 mM LiCl, BK stimulated the inositol monophosphate levels nine-fold in PC12 (-) and 30-fold in PC12 (+) cells. After incubation for 20 h with NGF, an increased binding of [3H]BK to the PC12 (+) cells was observed at 4 degrees C. Exposure of the cells for 30 min to 25 mM LiCl enhanced the effect of BK on the inositol incorporation into total inositol lipids, especially in PC12(+) cells. In these cells, LiCl in the presence of BK also increased several-fold the intracellular levels of inositol bisphosphate and inositol trisphosphate.  相似文献   
48.
Chemiluminescent detection was applied to measure the continuous spontaneous Ca2+-independent liberation of acetylcholine (ACh) from Torpedo electric organ synaptosomes. Differentiation between the release of ACh and choline was achieved by inhibiting cholinesterases with phospholine, and a way to quantify the continuous release was devised. The method permitted measurements during short time intervals from minute amounts of tissue and without an accumulation of ACh in the medium. Synaptosomes continuously liberated small amounts of ACh during incubations in the presence of 3 mM K+ and in the absence of Ca2+. The spontaneous liberation of ACh was similar both quantitatively and qualitatively at pH values of 8.6 and 7.8. It was unaltered by MgCl2 (10.4 mM), 2-(4-phenylpiperidino)cyclohexanol (10 microM), ouabain (104 microM), atropine (10 microM), and valinomycin (102 nM). Carbamoylcholine brought about a decrease, which could be partially reversed by atropine. The Ca2+-independent output of ACh was increased considerably when the concentration of K+ ions was raised (eightfold at 103 and 35-fold at 203 mM K+). Carbamoylcholine (104 microM) blocked the increase in ACh release produced by high K+; this effect of carbamoylcholine was not reversed by atropine (10 microM). When Ca2+ was added to synaptosomes depolarized by a high concentration of K+, the amount of ACh released during the first 1-3 min after the addition of Ca2+ was at least 20 times higher than in the absence of Ca2+, but the release returned rapidly to predepolarization values. Similarly high values of ACh release could be achieved by adding Ca2+ plus the ionophore A23187 and even higher values by adding Ca2+ plus gramicidin.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   
49.
The binding of alpha-[3H]amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid ([3H]AMPA), a structural Glu analog, to rat striatal membranes was studied. In the absence of potassium thiocyanate and Cl-/Ca2+, saturation-curve analysis of [3H]AMPA binding suggested that a single class of noninteracting binding sites with a KD value of 340 +/- 27 nM was involved, although AMPA inhibition of [3H]AMPA binding set at a concentration of 100 nM suggested, in contrast, the presence of multiple populations of striatal binding sites. Several other excitatory amino acid receptor agonists and antagonists were tested, and the most potent and selective quisqualic acid (QA) receptor agonists (QA, L-Glu, and AMPA) were found to represent the most potent inhibitors of [3H]AMPA binding. N-Methyl-D-aspartate receptor agonists and antagonists were ineffective as displacers of the [3H]AMPA binding. Lesions of intrastriatal neurons (using kainic acid local injections) and of corticostriatal afferent fibers led 2-3 weeks later to large decreases (63 and 30%, respectively) in striatal [3H]AMPA binding, whereas selective lesion of the nigrostriatal dopaminergic pathway (using nigral injection of 6-hydroxy-dopamine) was without any influence. Taken together, these results suggest that [3H]AMPA binding is primarily associated with postsynaptic intrastriatal neurons. Some [3H]AMPA binding sites may also be located presynaptically on corticostriatal nerve endings. So, in addition to the possibility that [3H]AMPA binding sites may be involved in corticostriatal synaptic transmission, it is interesting that these putative QA-preferring excitatory amino acid receptor sites may also play some role in autoregulatory processes underlying this excitatory synaptic transmission.  相似文献   
50.
The potent noncompetitive N-methyl-D-aspartate (NMDA) receptor antagonist [3H]MK-801 bound with nanomolar affinity to rat brain membranes in a reversible, saturable, and stereospecific manner. The affinity of [3H]MK-801 was considerably higher in 5 mM Tris-HCl (pH 7.4) than in previous studies using Krebs-Henseleit buffer. [3H]MK-801 labels a homogeneous population of sites in rat cerebral cortical membranes with KD of 6.3 nM and Bmax of 2.37 pmol/mg of protein. This binding was unevenly distributed among brain regions, with hippocampus greater than cortex greater than olfactory bulb = striatum greater than medulla-pons, and the cerebellum failing to show significant binding. Detailed pharmacological characterization indicated [3H]MK-801 binding to a site which was competitively and potently inhibited by known noncompetitive NMDA receptor antagonists, such as phencyclidine, thienylcyclohexylpiperidine (TCP), ketamine, N-allylnormetazocine (SKF 10,047), cyclazocine, and etoxadrol, a specificity similar to sites labelled by [3H]TCP. These sites were distinct from the high-affinity sites labelled by the sigma receptor ligand (+)-[3H]SKF 10,047. [3H]MK-801 binding was allosterically modulated by the endogenous NMDA receptor antagonist Mg2+ and by other active divalent cations. These data suggest that [3H]MK-801 labels a high-affinity site on the NMDA receptor channel complex, distinct from the NMDA recognition site, which is responsible for the blocking action of MK-801 and other noncompetitive NMDA receptor antagonists.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号