首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2210篇
  免费   64篇
  国内免费   50篇
  2023年   21篇
  2022年   38篇
  2021年   43篇
  2020年   60篇
  2019年   92篇
  2018年   93篇
  2017年   46篇
  2016年   31篇
  2015年   31篇
  2014年   125篇
  2013年   156篇
  2012年   92篇
  2011年   150篇
  2010年   114篇
  2009年   113篇
  2008年   115篇
  2007年   125篇
  2006年   97篇
  2005年   79篇
  2004年   55篇
  2003年   60篇
  2002年   37篇
  2001年   18篇
  2000年   22篇
  1999年   24篇
  1998年   21篇
  1997年   18篇
  1996年   17篇
  1995年   17篇
  1994年   26篇
  1993年   18篇
  1992年   14篇
  1991年   15篇
  1990年   14篇
  1989年   12篇
  1988年   18篇
  1987年   12篇
  1986年   10篇
  1985年   32篇
  1984年   26篇
  1983年   28篇
  1982年   36篇
  1981年   19篇
  1980年   18篇
  1979年   23篇
  1978年   26篇
  1977年   20篇
  1976年   12篇
  1975年   9篇
  1974年   15篇
排序方式: 共有2324条查询结果,搜索用时 17 毫秒
91.
A fungal galectin from Agrocybe cylindracea (ACG) exhibits broad binding specificity for β-galactose–containing glycans. We determined the crystal structures of wild-type ACG and the N46A mutant, with and without glycan ligands. From these structures and a saccharide-binding analysis of the N46A mutant, we revealed that a conformational change of a unique insertion sequence containing Asn46 provides two binding modes for ACG, and thereby confers broad binding specificity. We propose that the unique sequence provides these two distinct glycan-binding modes by an induced-fit mechanism.  相似文献   
92.
The interaction of amyloid beta (Aβ) peptide with cell membranes has been shown to be influenced by Aβ conformation, membrane physicochemical properties and lipid composition. However, the effect of cholesterol and its oxidized derivatives, oxysterols, on Aβ-induced neurotoxicity to membranes is not fully understood. We employed here model membranes to investigate the localization of Aβ in membranes and the peptide-induced membrane dynamics in the presence of cholesterol and 7-ketocholesterol (7keto) or 25-hydroxycholesterol (25OH). Our results have indicated that oxysterols rendered membranes more sensitive to Aβ, in contrast to role of cholesterol in inhibiting Aβ/membrane interaction. We have demonstrated that two oxysterols had different impacts owing to distinct positions of the additional oxygen group in their structures. 7keto-containing cell-sized liposomes exhibited a high propensity toward association with Aβ, while 25OH systems were more capable of morphological changes in response to the peptide. Furthermore, we have shown that 42-amino acid Aβ (Aβ-42) pre-fibril species had higher association with membranes, and caused membrane fluctuation faster than 40-residue isoform (Aβ-40). These findings suggest the enhancing effect of oxysterols on interaction of Aβ with membranes and contribute to clarify the harmful impact of cholesterol on Aβ-induced neurotoxicity by means of its oxidation.  相似文献   
93.
Pyruvate carboxylase (PC) is a biotin-dependent enzyme that catalyzes the MgATP- and bicarbonate-dependent carboxylation of pyruvate to oxaloacetate, an important anaplerotic reaction in central metabolism. The carboxyltransferase (CT) domain of PC catalyzes the transfer of a carboxyl group from carboxybiotin to the accepting substrate, pyruvate. It has been hypothesized that the reactive enolpyruvate intermediate is stabilized through a bidentate interaction with the metal ion in the CT domain active site. Whereas bidentate ligands are commonly observed in enzymes catalyzing reactions proceeding through an enolpyruvate intermediate, no bidentate interaction has yet been observed in the CT domain of PC. Here, we report three X-ray crystal structures of the Rhizobium etli PC CT domain with the bound inhibitors oxalate, 3-hydroxypyruvate, and 3-bromopyruvate. Oxalate, a stereoelectronic mimic of the enolpyruvate intermediate, does not interact directly with the metal ion. Instead, oxalate is buried in a pocket formed by several positively charged amino acid residues and the metal ion. Furthermore, both 3-hydroxypyruvate and 3-bromopyruvate, analogs of the reaction product oxaloacetate, bind in an identical manner to oxalate suggesting that the substrate maintains its orientation in the active site throughout catalysis. Together, these structures indicate that the substrates, products and intermediates in the PC-catalyzed reaction are not oriented in the active site as previously assumed. The absence of a bidentate interaction with the active site metal appears to be a unique mechanistic feature among the small group of biotin-dependent enzymes that act on α-keto acid substrates.  相似文献   
94.
Apoptosis is an important mechanism to maintain homeostasis in mammals, and disruption of the apoptosis regulation mechanism triggers a range of diseases, such as cancer, autoimmune diseases, and developmental disorders. The severity of influenza A virus (IAV) infection is also closely related to dysfunction of apoptosis regulation. In the virus infected cells, the functions of various host cellular molecules involved in regulation of induction of apoptosis are modulated by IAV proteins to enable effective virus replication. The modulation of the intracellular signaling pathway inducing apoptosis by the IAV infection also affects extracellular mechanisms controlling apoptosis, and triggers abnormal host responses related to the disease severity of IAV infections. This review focuses on apoptosis related molecules involved in IAV replication and pathogenicity, the strategy of the virus propagation through the regulation of apoptosis is also discussed.  相似文献   
95.
Many proteins are S-acylated, affecting their localization and function. Dynamic S-acylation in response to various stimuli has been seen for several proteins in vivo. The regulation of S-acylation is beginning to be elucidated. Proteins can autoacylate or be S-acylated by protein acyl transferases (PATs). Deacylation, on the other hand, is an enzymatic process catalyzed by protein thioesterases (APT1 and PPT1) but only APT1 appears to be involved in the regulation of the reversible S-acylation of cytoplasmic proteins seen in vivo. PPT1, on the other hand, is involved in the lysosomal degradation of S-acylated proteins and PPT1 deficiency causes the disease infant neuronal ceroid lipofuscinosis.  相似文献   
96.
Glutathione S‐transferase (GST) was found to complex with the Na+,K+‐ATPase as shown by binding assay using quartz crystal microbalance. The complexation was obstructed by the addition of antiserum to the α‐subunit of the Na+,K+‐ATPase, suggesting the specificity of complexation between GST and the Na+,K+‐ATPase. Co‐immunoprecipitation experiments, using the anti‐α‐subunit antiserum to precipitate the GST‐Na+,K+‐ATPase complex and then using antibodies specific to an isoform of GST to identify the co‐precipitated proteins, revealed that GSTπ was complexed with the Na+,K+‐ATPase. GST stimulated the Na+,K+‐ATPase activity up to 1.4‐fold. The level of stimulation exhibited a saturable dose–response relationship with the amount of GST added, although the level of stimulation varied depending on the content of GSTπ in the lots of GST received from supplier. The stimulation was also obtained when recombinant GSTπ was used, confirming the results. When GST was treated with reduced glutathione, GST activity was greatly stimulated, whereas the level of stimulation of the Na+,K+‐ATPase activity was similar to that when untreated GST was added. When GST was treated with H2O2, GST activity was greatly diminished while the stimulation of the Na+,K+‐ATPase activity was preserved. The results suggest that GSTπ complexes with the Na+,K+‐ATPase and stimulates the latter independent of its GST activity. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   
97.
ABSTRACT

Japanese apricot, Prunus mume Sieb. et Zucc., biosynthesizes the l-phenylalanine-derived cyanogenic glucosides prunasin and amygdalin. Prunasin has biological properties such as anti-inflammation, but plant extraction and chemical synthesis are impractical. In this study, we identified and characterized UGT85A47 from Japanese apricot. Further, UGT85A47 was utilized for prunasin microbial production. Full-length cDNA encoding UGT85A47 was isolated from Japanese apricot after 5?- and 3?-RACE. Recombinant UGT85A47 stoichiometrically catalyzed UDP-glucose consumption and synthesis of prunasin and UDP from mandelonitrile. Escherichia coli C41(DE3) cells expressing UGT85A47 produced prunasin (0.64 g/L) from racemic mandelonitrile and glucose. In addition, co-expression of genes encoding UDP-glucose biosynthetic enzymes (phosphoglucomutase and UTP-glucose 1-phosphate uridiltransferase) and polyphosphate kinase clearly improved prunasin production up to 2.3 g/L. These results showed that our whole-cell biocatalytic system is significantly more efficient than the existing prunasin production systems, such as chemical synthesis.  相似文献   
98.
Changes in the small intestinal mucin contents in rats were evaluated by two methods, viz., a newly established ELISA and a method based on the measurement of O-linked oligosaccharide chains (OSC) as a mucin marker. Significant correlation was observed between the values of ELISA-derived mucins and OSC. The results confirm the usefulness of measurement of OSC as an alternative method for mucin determination.  相似文献   
99.
To clarify the effects of forest fragmentation and a change in tree species composition following urbanization on endophytic fungal communities, we isolated fungal endophytes from the foliage of nine tree species in suburban (Kashiwa City, Chiba) and rural (Mt. Wagakuni, Ibaraki; Mt. Takao, Tokyo) forests and compared the fungal communities between sites and host tree species. Host specificity was evaluated using the index of host specificity (Si), and the number of isolated species, total isolation frequency, and the diversity index were calculated. From just one to several host-specific species were recognized in all host tree species at all sites. The total isolation frequency of all fungal species on Quercus myrsinaefolia, Quercus serrata, and Chamaecyparis obtusa and the total isolation frequency of host-specific species on Q. myrsinaefolia, Q. serrata, and Eurya japonica were significantly lower in Kashiwa than in the rural forests. The similarity indices (nonmetric multidimensional scaling (NMS) and CMH) of endophytic communities among different tree species were higher in Kashiwa, as many tree species shared the same fungal species in the suburban forest. Endophytic fungi with a broad host range were grouped into four clusters suggesting their preference for conifer/broadleaves and evergreen/deciduous trees. Forest fragmentation and isolation by urbanization have been shown to cause the decline of host-specific fungal species and a decrease in β diversity of endophytic communities, i.e., endophytic communities associated with tree leaves in suburban forests were found to be depauperate.  相似文献   
100.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号