首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   335篇
  免费   1篇
  国内免费   6篇
  342篇
  2023年   4篇
  2022年   1篇
  2021年   3篇
  2020年   5篇
  2019年   4篇
  2018年   12篇
  2017年   3篇
  2016年   3篇
  2015年   3篇
  2014年   20篇
  2013年   28篇
  2012年   14篇
  2011年   17篇
  2010年   16篇
  2009年   20篇
  2008年   14篇
  2007年   23篇
  2006年   19篇
  2005年   17篇
  2004年   5篇
  2003年   5篇
  2002年   3篇
  1999年   1篇
  1996年   4篇
  1990年   1篇
  1985年   14篇
  1984年   10篇
  1983年   13篇
  1982年   18篇
  1981年   8篇
  1980年   6篇
  1979年   6篇
  1978年   5篇
  1977年   3篇
  1976年   3篇
  1975年   3篇
  1974年   3篇
  1973年   2篇
  1972年   3篇
排序方式: 共有342条查询结果,搜索用时 15 毫秒
101.
We have used a bifunctional spin label (BSL) to cross-link Cys707 (SH1) and Cys697 (SH2) in the catalytic domain of myosin subfragment 1 (S1). BSL induces the same weakened ATPase activity and actin-binding affinity that is observed when SH1 and SH2 are cross-linked with pPDM, which traps an analog of the post-hydrolysis state A·M·ADP·P. Electron paramagnetic resonance showed that BSL reports the global orientation and dynamics of S1. When bound to actin in oriented muscle fibers in the absence of ATP, BSL-S1 showed almost complete orientational disorder, as reported previously for the weakly bound A·M·ADP. In contrast, helical order is observed for the strongly bound state A·M. Saturation transfer electron paramagnetic resonance showed that the disorder of cross-linked S1 on actin is nearly static on the microsecond timescale, at least 30 times slower than that of A·M·ADP. We conclude that cross-linked S1 exhibits rotational disorder comparable to that of A·M·ADP, slow rotational mobility comparable to that of A·M, and intermediate actin affinity. These results support the hypothesis that the catalytic domain of myosin is orientationally disordered on actin in a post-hydrolysis state in the early stages of force generation.  相似文献   
102.
The bioavailability of Delta(9)-tetrahydrocannabinol (THC) was determined after its sublingual administration as solid THC/beta-cyclodextrin (THC/beta-CD) complex, and was compared to oral administration of ethanolic THC, in rabbits. The absolute bioavailability of THC after sublingual administration of solid THC/beta-CD complex powder (16.0 +/- 7.5%; mean +/- SD; n = 4) is higher than the bioavailability of THC after oral administration of ethanolic THC solution (1.3 +/- 1.4%; mean +/- SD; n = 4). The results suggest that sublingual administration of THC/beta-CD complex is a useful tool in improving absolute bioavailability of THC.  相似文献   
103.
A full-length cDNA clone that encodes progesterone 5beta-reductase (5beta-POR) was isolated from Digitalis lanata leaves. The reading frame of the 5beta-POR gene is 1170 nucleotides corresponding to 389 amino acids. For expression, a Sph1/Sal1 5beta-POR fragment was cloned into the pQE vector and was transformed into Escherichia coli strain M15[pREP4]. The recombinant gene was functionally expressed and the recombinant enzyme was characterized. The K(m) and v(max) values for the putative natural substrate progesterone were calculated to be 0.120 mM and 45 nkat mg(-1) protein, respectively. Only 5beta-pregnane-3,20-dione but not its alpha-isomer was formed when progesterone was used as the substrate. Kinetic constants for cortisol, cortexone, 4-androstene-3,17-dione and NADPH were also determined. The molecular organization of the 5beta-POR gene in D. lanata was determined by Southern blot analysis. The 5beta-POR is highly conserved within the genus Digitalis and the respective genes and proteins share considerable homology to putative progesterone reductases from other plant species.  相似文献   
104.
以二十碳五烯酸(EPA)和二十二碳六烯酸(DHA)为代表的长链多不饱和脂肪酸,对人体心血管系统、神经系统、抗炎免疫系统等有着理想的功效,因而倍受研究者关注。我们从结构、生物来源和合成、生理功能及生物工程途径的研究现状等方面阐述了EPA和DHA的相关信息,并对其生成途径中涉及的酶进行了简要概述。  相似文献   
105.
The peroxisome proliferator-activated receptor-gamma (PPAR-gamma) has been implicated in inhibition of the expression of proinflammatory cytokines and inducible enzymes such as cyclooxygenase-2 (COX-2). Using real-time RT-PCR the present study investigates the impact of two PPAR-gamma agonists, 15-deoxy-Delta(12,14)-prostaglandin J(2) (15d-PGJ(2)) and ciglitazone, on the expression of several proinflammatory genes in lipopolysaccharide (LPS)-stimulated human blood monocytes. Stimulation of cells with LPS resulted in a profound induction of the expression of COX-2, interleukin (IL)-1, IL-6, tumor necrosis factor (TNF), and granulocyte-macrophage colony-stimulating factor (GM-CSF). Treatment of cells with 15d-PGJ(2) (10 microM) was associated with a nearly complete inhibition of the expression of all genes that remained unaltered in the presence of the PPAR-gamma antagonist bisphenol A diglycidyl ether (BADGE; 100 microM). By contrast, treatment of cells with another potent PPAR-gamma agonist, ciglitazone (50 microM), and the PPAR-alpha agonist WY-14,643 (100 microM) did not suppress LPS-induced expression of the investigated genes. Stimulation of monocytes with LPS resulted in an 88% inhibition of PPAR-gamma mRNA expression that was fully restored by 15d-PGJ(2) but only to a partial extent by ciglitazone and WY-14,643. Again, BADGE did not alter the effect of 15d-PGJ(2). Collectively, our results show that alterations of gene expression by 15d-PGJ(2) in LPS-stimulated human blood monocytes are mediated by PPAR-gamma-independent mechanisms. Moreover, it is concluded that both inhibition of proinflammatory gene expression and restoration of LPS-induced decrease of PPAR-gamma expression may contribute to the biological action of 15d-PGJ(2).  相似文献   
106.
John D. Mills  Peter Mitchell 《BBA》1984,764(1):93-104
Thiol modulation of the chloroplast protonmotive ATPase (CF0-CF1) by preillumination of broken chloroplasts in the presence of dithiothreitol (or preillumination of intact chloroplasts in the absence of added thiols) had the following effects on photophosphorylation. (1) When assayed at pH 8 and saturating light, the initial rate of photophosphorylation was increased by 10–40%. There was an accompanying increase in the rate of coupled electron transport with no significant change in the overall P2e ratio. (2) On lowering the pH of the assay medium to pH 7, the stimulatory effect of thiol modulation on photophosphorylation and coupled electron flow was enhanced. At pH 7, there was also a small increase in P2e ratio. (3) Addition of a non-saturating amount of uncoupler to the assay medium enhanced the stimulatory effect of thiol modulation on photophosphorylation. In the presence of 1 mM NH4Cl, there was only a small increase in coupled electron flow and a correspondingly larger increase in P2e ratio. (4) Lowering the light intensity, or inhibiting electron transport, diminished the stimulatory effect of thiol modulation on photophosphorylation, coupled electron transport and P2e ratio. (5) Under all the above conditions, the ΔpH maintained across the thylakoid membrane was lower after thiol modulation, even when photophosphorylation markedly increased in rate. (6) Thiol modulation of CF0-CF1 increased the observed Michaelis constant for ADP (Km(ADP)) and the apparent maximum rate (Vapp of photophosphorylation by the same factor, so that ratio VappKm was not altered. VappKm was also unaffected by changing the medium pH, but was significantly decreased upon addition of uncouplers to the medium. These results indicate that the observed rate of ATP synthesis catalysed by thiol demodulated chloroplasts is limited kinetically by the fraction (α) of enzyme molecules that are active during photophosphorylation. A model based on a dual pH optimum requirement for activation of CF0-CF1 is presented to explain the dependence of α on ΔpH. Thiol modulation of CF0-CF1 is proposed to stimulate photophosphorylation by causing the enzyme to become active over a lower range of ΔpH, thereby reducing the kinetic limitation on ATP synthesis imposed by the activation process.  相似文献   
107.
D de Mendoza  A L Rosa 《Gene》1985,39(1):55-59
A technique has been developed that permits the packaging of mini-Mu-carrying cosmids into phage lambda heads. This procedure has several advantages over packaging into Mu helper capsids: the amounts of DNA to be packaged can be increased, the packaging efficiency is improved, and the stability of transducing lysates is high.  相似文献   
108.
109.
S Hattman  J Ives  W Margolin  M M Howe 《Gene》1985,39(1):71-76
Expression of the bacteriophage Mu mom gene is under tight regulatory control. One of the factors required for mom gene expression is the trans-acting function (designated Dad) provided by another Mu gene. To facilitate studies on the signals mediating mom regulation, we have constructed a mom-lacZ fusion plasmid which synthesizes beta-galactosidase only when the Mu Dad transactivating function is provided. lambda pMu phages carrying different segments of the Mu genome have been assayed for their ability to transactivate beta-galactosidase expression by the fusion plasmid. The results of these analyses indicated that the Dad transactivation function is encoded between the leftmost EcoRI site and the lys gene of Mu; this region includes the C gene, which is required for expression of all Mu late genes. Cloning of an approx. 800-bp fragment containing the C gene produced a plasmid which could complement MuC- phages for growth and could transactivate the mom-lacZ fusion plasmid to produce beta-galactosidase. These results suggest that the C gene product mediates the Dad transactivation function.  相似文献   
110.
We asked if single-stranded vector DNA molecules could be used to reintroduce cloned DNA sequences into a eukaryotic cell and cause genetic transformation typical of that observed using double-stranded DNA vectors. DNA was presented to Saccharomyces cerevisiae following a standard transformation protocol, genetic transformants were isolated, and the physical state of the transforming DNA sequence was determined. We found that single-stranded DNA molecules transformed yeast cells 10- to 30-fold more efficiently than double-stranded molecules of identical sequence. More cells were competent for transformation by the single-stranded molecules. Single-stranded circular (ssc) DNA molecules carrying the yeast 2 μ plasmid-replicator sequence were converted to autonomously replicating double-stranded circular (dsc) molecules, suggesting their efficient utilization as templates for DNA synthesis in the cell. Single-stranded DNA molecules carrying 2 μ plasmid non-replicator sequences recombined with the endogenous multicopy 2 μ plasmid DNA. This recombination yielded either the simple molecular adduct expected from homologous recombination (40% of the transformants examined) or aberrant recombination products carrying incomplete transforming DNA sequences, endogenous 2 μ plasmid DNA sequences, or both (60% of the transformants examined). These aberrant recombination products suggest the frequent use of a recombination pathway that trims one or both of the substrate DNA molecules. Similar aberrant recombination products were detected in 30% of the transformants in cotransformation experiments employing single-stranded and double-stranded DNA molecules, one carrying the 2 μ plasmid replicator sequence and the other the selectable genetic marker. We conclude that single-stranded DNA molecules are useful vectors for the genetic transformation of a eukaryotic cell. They offer the advantage of high transformation efficiency, and yield the same intracellular DNA species obtained upon transformation with double-stranded DNA molecules. In addition, single-stranded DNA molecules can participate in a recombination pathway that trims one or both DNA recombination substrates, a pathway not detected, at least at the same frequency, when transforming with double-stranded DNA molecules  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号