首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   38篇
  免费   2篇
  2018年   1篇
  2016年   1篇
  2014年   2篇
  2012年   4篇
  2011年   2篇
  2010年   1篇
  2009年   2篇
  2008年   5篇
  2007年   1篇
  2005年   2篇
  2004年   2篇
  2003年   4篇
  2002年   2篇
  2001年   2篇
  1999年   1篇
  1998年   1篇
  1996年   1篇
  1995年   1篇
  1993年   1篇
  1990年   1篇
  1985年   1篇
  1984年   1篇
  1977年   1篇
排序方式: 共有40条查询结果,搜索用时 15 毫秒
31.
Adaptations that enhance fitness in one situation can become liabilities if circumstances change. In tropical Australia, native snake species are vulnerable to the invasion of toxic cane toads. Death adders (Acanthophis praelongus) are ambush foragers that (i) attract vertebrate prey by caudal luring and (ii) handle anuran prey by killing the frog then waiting until the frog''s chemical defences degrade before ingesting it. These tactics render death adders vulnerable to toxic cane toads (Bufo marinus), because toads elicit caudal luring more effectively than do native frogs, and are more readily attracted to the lure. Moreover, the strategy of delaying ingestion of a toad after the strike does not prevent fatal poisoning, because toad toxins (unlike those of native frogs) do not degrade shortly after the prey dies. In our laboratory and field trials, half of the death adders died after ingesting a toad, showing that the specialized predatory behaviours death adders use to capture and process prey render them vulnerable to this novel prey type. The toads'' strong response to caudal luring also renders them less fit than native anurans (which largely ignored the lure): all toads bitten by adders died. Together, these results illustrate the dissonance in behavioural adaptations that can arise following the arrival of invasive species, and reveal the strong selection that occurs when mutually naive species first interact.  相似文献   
32.
Large slender-bodied snakes that forage actively for a generalized array of small vertebrates are conspicuous elements of the terrestrial snake fauna of most continents; the venomous elapid species fill this role in much of Asia, Africa and Australia. Our dissections of eight species of cobras from southern Africa Aspidelaps, Hemachatus, Naja; Serpentes and Elapidae (total of 1290 specimens) provide extensive data on sexual dimorphism, reproductive biology and food habits. Females grow larger than males in Aspidelaps lubricus and Naja nigricincta , but (perhaps reflecting selection on male body size due to male–male combat) males grow as large as females in Naja anchietae, Naja melanoleuca, Naja mossambica, Naja nivea and Hemachatus haemachatus , and males grow larger than females in Naja annulifera . Overall, the degree of male size superiority is higher in species with a larger absolute mean adult body size. Male cobras typically have larger heads and longer tails than conspecific females. Fecundity increases with maternal body size, and is higher in the viviparous rhinkals H. haemachatus than in the oviparous Naja species studied. Diets are broad in all eight species, comprising a wide variety of amphibians, reptiles, mammals and (less often) birds. Ontogenetic (size-related) shifts in dietary composition (amphibian to reptile to mammal) are significant within some taxa ( N. annulifera, N. nigricincta ) but absent in others (notably N. nivea , the most arid-adapted species). Overall, despite substantial interspecific variation among the eight study species, strong parallels are evident between the cobras of southern Africa and their ecological counterparts in other continents.  相似文献   
33.
Yellow‐lipped sea kraits (Laticauda colubrina) are amphibious in their habits. We measured their locomotor speeds in water and on land to investigate two topics: (1) to what degree have adaptations to increase swimming speed (paddle‐like tail etc.) reduced terrestrial locomotor ability in sea kraits?; and (2) do a sea krait’s sex and body size influence its locomotor ability in these two habitats, as might be expected from the fact that different age and sex classes of sea kraits use the marine and terrestrial environments in different ways? To estimate ancestral states for locomotor performance, we measured speeds of three species of Australian terrestrial elapids that spend part of their time foraging in water. The evolutionary modifications of Laticauda for marine life have enhanced their swimming speeds by about 60%, but decreased their terrestrial locomotor speed by about 80%. Larger snakes moved faster than smaller individuals in absolute terms but were slower in terms of body lengths travelled per second, especially on land. Male sea kraits were faster than females (independent of the body‐size effect), especially on land. Prey items in the gut reduced locomotor speeds both on land and in water. Proteroglyphous snakes may offer exceptional opportunities to study phylogenetic shifts in locomotor ability, because (1) they display multiple independent evolutionary shifts from terrestrial to aquatic habits, and (2) one proteroglyph lineage (the laticaudids) displays considerable intraspecific and interspecific diversity in terms of the degree to which they use terrestrial vs. aquatic habitats.  相似文献   
34.
The present study examined the taxonomic distribution of dipeptidyl peptidase IV (DPP IV) activity in venoms of 59 ophidian taxa, representing seven subfamilies of the Families Elapidae and Viperidae. DPP IV activity is extremely variable at all taxonomic levels. It ranged from essentially none in laticaudine, hydrophiine, and some bungarine and elapine venoms, to 10.72 μmol 4-methoxy-β-naphthylamine liberated per min per 200 μg venom, for Ophiophagus hannah. Intra- and interpopulational variation were examined among eight populations of prairie rattlesnakes (Crotalus viridis viridis), Great Basin rattlesnakes (Crotalus viridis lutosus) and southern Pacific rattlesnakes (Crotalus viridis helleri). Among these populations, the mean weighted range of variation was 4.9-fold, and even among litter mates of C. v. lutosus, DPP IV activity varied as much as 5.6-fold. The two most salient findings, the near ubiquity of DPP IV in snake venoms and its great quantitative variability, even among full siblings, are paradoxical. The widespread distribution of the enzyme suggests an important role in envenomation, while the variable activity levels suggest that DPP IV and by extension, other individual enzymatic constituents, may not be under much individual selective pressure.  相似文献   
35.
Elapids, viperids, and some other groups of colubroid snakes have tubular fangs for the conduction of venom into their prey. The literature describing the development of venom-conducting fangs provides two contradictory accounts of fang development. Some studies claim that the venom canal forms by the infolding of a deep groove along the surface of the tooth to produce an enclosed canal. In other works the tubular fang is said to form by the deposition of material from tip to base, so that the canal develops without any folding. This study was undertaken to examine fang development and to account for the disagreement in the literature by determining whether fang formation varies among groups of venomous snakes and whether it differs between embryos and adults. Adult and embryonic representatives of elapids and viperids were examined. All fangs examined, elapid and viperid, embryos and adults, were found to develop into their tubular shape by the addition of material to the basal end of the tooth rather than by the folding inward of an ungrooved tooth to form a tubular fang. In some cases, the first fang that develops in embryonic snakes differs morphologically from all those formed subsequently.  相似文献   
36.
Molecular Evolution and Phylogeny of Elapid Snake Venom Three-Finger Toxins   总被引:7,自引:0,他引:7  
Animal venom components are of considerable interest to researchers across a wide variety of disciplines, including molecular biology, biochemistry, medicine, and evolutionary genetics. The three-finger family of snake venom peptides is a particularly interesting and biochemically complex group of venom peptides, because they are encoded by a large multigene family and display a diverse array of functional activities. In addition, understanding how this complex and highly varied multigene family evolved is an interesting question to researchers investigating the biochemical diversity of these peptides and their impact on human health. Therefore, the purpose of our study was to investigate the long-term evolutionary patterns exhibited by these snake venom toxins to understand the mechanisms by which they diversified into a large, biochemically diverse, multigene family. Our results show a much greater diversity of family members than was previously known, including a number of subfamilies that did not fall within any previously identified groups with characterized activities. In addition, we found that the long-term evolutionary processes that gave rise to the diversity of three-finger toxins are consistent with the birth-and-death model of multigene family evolution. It is anticipated that this three-finger toxin toolkit will prove to be useful in providing a clearer picture of the diversity of investigational ligands or potential therapeutics available within this important family.  相似文献   
37.
Cobras and mambas are members of a group of elapid snakes supposedly united by the morphology and inferred behavior of their palatine bone during prey transport (palatine erectors). The palatine erectors investigated (Dendroaspis polylepis, Naja pallida, Ophiophagus hannah, Aspidelaps scutatus, A. lubricus) show differences in the morphology of their feeding apparatus that do not affect the overall behavior of the system. We delineated the structures directly involved in producing palatine erection during prey transport. Palatine erection can be achieved by a colubroid muscle contraction pattern acting on a palato-pterygoid bar with a movable palato-pterygoid joint and a palatine that is stabilized against the snout. The palatine characters originally proposed to cause palatine erection are not required to produce the behavior and actually impede it in Naja pallida. Palatine-erecting elapids share a fundamental design of the palato-maxillary apparatus with all higher snakes. A set of plesiomorphic core characters is functionally integrated to function in prey transport using the pterygoid walk. Variant characters are either part of a structural periphery unrelated to the core structures that define function or patterns of variation are subordinate character sets operating within functional thresholds of a single system.  相似文献   
38.
Snake -neutotoxins of Elapidae venoms are grouped into two structural classes, short-chain and long-chain -neutotoxins. While these two classes share many chemical and biological characteristics, there are also distinct dissimilarities between them, including their binding site on the nicotinic acetylcholine receptor (nAChR), specificity among species of Chordata, and the associated pharmacological effects. In the present study we test the hypothesis that structural motifs that evolved to confer natural resistance against conspecific long-chain -neurotoxins in Elapidae snakes also interfere with the biological action of short-chain -neurotoxins. We expressed functional nAChRs that contains segments or single residues of the Elapidae nAChR ligand binding domain and tested the effect of short-chain -neurotoxin erabutoxin-a (ETX-a) from the Erabu sea snake Laticauda semifasciata on the acetylcholine-induced currents as measured by two-microelectrode voltage clamp. Our results show that the Elapidae nAChR subunit segment T154–L208 ligand binding domain has an inhibitory effect on the pharmacological action of ETX-a. This effect is primarily attributed to the presence of glycosylation at position N189. If the glycosylation is removed from the T154–L208 segment, the nAChR will be inhibited, however, to a lesser extent than seen in the mouse. This effect correlates with the variations in -neurotoxin sensitivity of different species and, importantly, reflects the evolutionary conservation of the binding site on the nAChR polypeptide backbone per se. Phylogenetic analysis of -neurotoxin resistance suggests that -neurotoxin-resistant nAChR evolved first, which permitted the evolution of snake venom -neurotoxins. A model describing -neurotoxin resistance in Elapidae snakes is presented. Present address: Schering-Plough Research Institute, CNS-CV Research, K-15 C205/2600, 2015 Galloping Hill Road, Kenilworth, NJ 07033, USA  相似文献   
39.
Changes in structure and composition of the eggshell resulting from embryonic mobilization of minerals from the eggshell are found in all oviparous reptiles studied thus far. In this study, we measured samples of unhatched and hatched eggshells of the Chinese cobra Naja atra to determine the percentage of ash and the phase composition of calcium carbonate. The mean percentage of ash was significantly higher in unhatched eggshells (24.6%) than in hatched eggshells (22.3%). The dominant phase in unhatched eggshells was the calcite form of calcium carbonate. In addition to the peaks of calcite, a few small peaks were found to be caused by the aragonite and vaterite phases of calcium carbonate, implying that there are small amounts of aragonite and vaterite in the eggshell. The concentration of the various phases calculated from the intensity of the X-ray diffraction spectra allowed the estimation that percentages of calcite, aragonite and vaterite were about 92%, 4% and 4%, respectively. Hatched eggshells produced similar spectral characteristics as unhatched eggshells, with one exception. The dominant phase composition in the hatched eggshell was also calcite, but the amount of the aragonite phase had a marked increase. Our study adds evidence that embryonic mobilization of minerals from the eggshell may result in changes in structure of the eggshell.  相似文献   
40.
The defining morphological characters of the family Elapidae are analysed in an attempt to evaluate whether the front-fanged, proteroglyphous, snakes constitute a natural (monophyletic) group or whether proteroglyphy is more likely to be a condition achieved independently by a number of higher snake lineages. The evidence relating to presumed elapids whose affinities have been questioned, namely a South African genus Homoroselaps and New World proteroglyphs (Micrurus and Micruroides) , is examined. It concluded that Homoroselaps is a genuinely equivocal case, the evidence for its inclusion in the Elapidae is balanced by features which suggest that it is more closely related to the Aparallactinae. However, Micrurus and Micruroides seem clearly to be more closely related to undisputed elapids than to any other caenophidians. It is suggested that, at least for the present, the family Elapidae be retained in its broad sense to include all proteroglyphous snakes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号