首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5780篇
  免费   509篇
  国内免费   144篇
  6433篇
  2024年   3篇
  2023年   50篇
  2022年   61篇
  2021年   152篇
  2020年   169篇
  2019年   159篇
  2018年   138篇
  2017年   173篇
  2016年   173篇
  2015年   299篇
  2014年   327篇
  2013年   404篇
  2012年   345篇
  2011年   274篇
  2010年   220篇
  2009年   394篇
  2008年   382篇
  2007年   392篇
  2006年   338篇
  2005年   281篇
  2004年   268篇
  2003年   224篇
  2002年   179篇
  2001年   177篇
  2000年   154篇
  1999年   139篇
  1998年   125篇
  1997年   115篇
  1996年   74篇
  1995年   50篇
  1994年   51篇
  1993年   50篇
  1992年   30篇
  1991年   16篇
  1990年   13篇
  1989年   11篇
  1988年   5篇
  1987年   5篇
  1986年   2篇
  1985年   4篇
  1983年   3篇
  1982年   2篇
  1981年   2篇
排序方式: 共有6433条查询结果,搜索用时 1 毫秒
51.
Catalysing the hydrolysis of terminal beta-galactosyl residues from carbohydrates, galactolipids, and glycoproteins, glycoside hydrolase family 35 (beta-galactosidases; BGALs) are widely distributed in plants and believed to play many key roles, including modification of cell wall components. Completion of the Arabidopsis thaliana genome sequencing project has, for the first time, allowed an examination of the total number, gene structure, and evolutionary patterns of all Family 35 members in a representative (model) angiosperm. Reiterative database searches established a multigene family of 17 members (designated BGAL1-BGAL17). Using these genes as query sequences, BLAST and Hidden Markov Model searches identified BGAL genes among 22 other eukaryotes, whose genomic sequences are known. The Arabidopsis (n=17) and rice (n=15) BGAL families were much larger than those of Chlamydomonas, fungi, and animals (n=0-4), and a lineage-specific expansion of BGAL genes apparently occurred after divergence of the Arabidopsis and rice lineages. All plant BGAL genes, with the exception of Arabidopsis BGAL17 and rice Os 9633.m04334, form a monophyletic group. Arabidopsis BGAL expression levels are much higher in mature leaves, roots, flowers, and siliques but are lower in young seedlings. BGAL8, BGAL11, BGAL13, BGAL14, and BGAL16 are expressed only in flowers. Catalytically active BGAL4 was produced in the E. coli and baculoviral expression systems, purified to electrophoretic homogeneity, and partially characterized. The purified enzyme hydrolyzed p- and o-nitrophenyl-beta-d-galactosides. It also cleaved beta-(1,3)-, beta-(1,4)-, and beta-(1,6)-linked galactobiosides and galactotriosides, showing a marked preference for beta-(1,3)- and beta-(1,4)-linkages.  相似文献   
52.
53.
Meiotic crossovers/chiasmata, that are required to ensure chromosome disjunction, arise via the class I interference-dependent pathway or via the class II interference-free pathway. The proportions of these two classes vary considerably between different organisms. In Arabidopsis, about 85% of chiasmata are eliminated in Atmsh4 mutants, denoting that these are class I events. In budding and fission yeasts Msh4-independent crossovers arise largely or entirely via a Mus81-dependent pathway. To investigate the origins of the 15% residual (AtMSH4-independent) chiasmata in Arabidopsis we conducted a cytological and molecular analysis of AtMUS81 meiotic expression and function. Although AtMUS81 functions in somatic DNA repair and recombination, it is more highly expressed in reproductive tissues. The protein is abundantly present in early prophase I meiocytes, where it co-localizes, in a double-strand break-dependent manner, with the recombination protein AtRAD51. Despite this, an Atmus81 mutant shows normal growth and has no obvious defects in reproductive development that would indicate meiotic impairment. A cytological analysis confirmed that meiosis was apparently normal in this mutant and its mean chiasma frequency was similar to that of wild-type plants. However, an Atmsh4 / Atmus81 double mutant revealed a significantly reduced mean chiasma frequency (0.85 per cell), compared with an Atmsh4 single mutant (1.25 per cell), from which we conclude that AtMUS81 accounts for some, but not all, of the 15% AtMSH4-independent residual crossovers. It is possible that other genes are responsible for these residual chiasmata. Alternatively the AtMUS81 pathway coexists with an alternative parallel pathway that can perform the same functions.  相似文献   
54.
藜科的极端盐生植物盐穗木(Halostachys caspica)的高盐胁迫抑制差减文库中有39%的功能未知蛋白(proteins with obscure features, POFs),利用亚细胞定位分析可以初步判断其可能的功能.将盐穗木的1个POF-cDNA序列HcUKPP的编码区构建至pCAMBIA1301-GFP植物表达载体上,冻融法将重组质粒pCAMBIA1301-HcUKPP-GFP转化农杆菌EH105A,利用花序浸染法将基因导入拟南芥,经潮霉素筛选获得T1代阳性幼苗.通过激光扫描共聚焦显微镜观察转基因拟南芥植株的根部细胞. 结果显示,表达GFP蛋白的对照转基因植株中,绿色荧光在细胞核、细胞膜以及细胞质中均能检测到,而表达HcUKPP-GFP融合蛋白的转基因植株中,绿色荧光只在细胞质膜上表达,说明HcUKPP蛋白为细胞质膜相关蛋白.本研究为深入探讨盐穗木未知蛋白的功能奠定了基础.  相似文献   
55.
56.
VHA-c3基因是拟南芥液泡H+-ATPase c亚基的5个同源基因之一,已有研究结果表明其与植物抗非生物胁迫有关。本论文在克隆不同长度VHA-c3基因上游调控序列的基础上,利用GUS报告基因,研究了VHA-c3基因的植物组织及器官定位。结果表明:VHA-c3起始密码子上游772bp的序列内存在着VHA-c3基因的基本启动子元件,可指导基因组成型表达在拟南芥的叶片、表皮毛、叶柄、根、雄蕊、柱头和萼片;在VHA-c3起始密码子ATG上游2812bp-2234bp片段和1496bp-772bp片段中各存在一个负调控元件,在2234bp-1496bp片段中存在一个正调控元件,它们的存在可控制基因在气孔中的表达。  相似文献   
57.
The priming agent β-aminobutyric acid (BABA) is known to enhance Arabidopsis resistance to the bacterial pathogen Pseudomonas syringae pv. tomato (Pst) DC3000 by potentiating salicylic acid (SA) defence signalling, notably PR1 expression. The molecular mechanisms underlying this phenomenon remain unknown. A genome-wide microarray analysis of BABA priming during Pst DC3000 infection revealed direct and primed up-regulation of genes that are responsive to SA, the SA analogue benzothiadiazole and pathogens. In addition, BABA was found to inhibit the Arabidopsis response to the bacterial effector coronatine (COR). COR is known to promote bacterial virulence by inducing the jasmonic acid (JA) response to antagonize SA signalling activation. BABA specifically repressed the JA response induced by COR without affecting other plant JA responses. This repression was largely SA-independent, suggesting that it is not caused by negative cross-talk between SA and JA signalling cascades. Treatment with relatively high concentrations of purified COR counteracted BABA inhibition. Under these conditions, BABA failed to protect Arabidopsis against Pst DC3000. BABA did not induce priming and resistance in plants inoculated with a COR-deficient strain of Pst DC3000 or in the COR-insensitive mutant coi1-16. In addition, BABA blocked the COR-dependent re-opening of stomata during Pst DC3000 infection. Our data suggest that BABA primes for enhanced resistance to Pst DC3000 by interfering with the bacterial suppression of Arabidopsis SA-dependent defences. This study also suggests the existence of a signalling node that distinguishes COR from other JA responses.  相似文献   
58.
Plant genomes are earmarked with defined patterns of chromatin marks. Little is known about the stability of these epigenomes when related, but distinct genomes are brought together by intra‐species hybridization. Arabidopsis thaliana accessions and their reciprocal hybrids were used as a model system to investigate the dynamics of histone modification patterns. The genome‐wide distribution of histone modifications H3K4me2 and H3K27me3 in the inbred parental accessions Col‐0, C24 and Cvi and their hybrid offspring was compared by chromatin immunoprecipitation in combination with genome tiling array hybridization. The analysis revealed that, in addition to DNA sequence polymorphisms, chromatin modification variations exist among accessions of A. thaliana. The range of these variations was higher for H3K27me3 (typically a repressive mark) than for H3K4me2 (typically an active mark). H3K4me2 and H3K27me3 were rather stable in response to intra‐species hybridization, with mainly additive inheritance in hybrid offspring. In conclusion, intra‐species hybridization does not result in gross changes to chromatin modifications.  相似文献   
59.
To infect plants, viruses rely heavily on their host's machinery. Plant genetic resistances based on host factor modifications can be found among existing natural variability and are widely used for some but not all crops. While biotechnology can supply for the lack of natural resistance alleles, new strategies need to be developed to increase resistance spectra and durability without impairing plant development. Here, we assess how the targeted allele modification of the Arabidopsis thaliana translation initiation factor eIF4E1 can lead to broad and efficient resistance to the major group of potyviruses. A synthetic Arabidopsis thaliana eIF4E1 allele was designed by introducing multiple amino acid changes associated with resistance to potyvirus in naturally occurring Pisum sativum alleles. This new allele encodes a functional protein while maintaining plant resistance to a potyvirus isolate that usually hijacks eIF4E1. Due to its biological functionality, this synthetic allele allows, at no developmental cost, the pyramiding of resistances to potyviruses that selectively use the two major translation initiation factors, eIF4E1 or its isoform eIFiso4E. Moreover, this combination extends the resistance spectrum to potyvirus isolates for which no efficient resistance has so far been found, including resistance‐breaking isolates and an unrelated virus belonging to the Luteoviridae family. This study is a proof‐of‐concept for the efficiency of gene engineering combined with knowledge of natural variation to generate trans‐species virus resistance at no developmental cost to the plant. This has implications for breeding of crops with broad‐spectrum and high durability resistance using recent genome editing techniques.  相似文献   
60.
Prenylquinols (tocochromanols and plastoquinols) serve as efficient physical and chemical quenchers of singlet oxygen (1O2) formed during high light stress in higher plants. Although quenching of 1O2 by prenylquinols has been previously studied, direct evidence for chemical quenching of 1O2 by plastoquinols and their oxidation products is limited in vivo. In the present study, the role of plastoquinol‐9 (PQH2‐9) in chemical quenching of 1O2 was studied in Arabidopsis thaliana lines overexpressing the SOLANESYL DIPHOSPHATE SYNTHASE 1 gene (SPS1oex) involved in PQH2‐9 and plastochromanol‐8 biosynthesis. In this work, direct evidence for chemical quenching of 1O2 by plastoquinols and their oxidation products is presented, which is obtained by microscopic techniques in vivo. Chemical quenching of 1O2 was associated with consumption of PQH2‐9 and formation of its various oxidized forms. Oxidation of PQH2‐9 by 1O2 leads to plastoquinone‐9 (PQ‐9), which is subsequently oxidized to hydroxyplastoquinone‐9 [PQ(OH)‐9]. We provide here evidence that oxidation of PQ(OH)‐9 by 1O2 results in the formation of trihydroxyplastoquinone‐9 [PQ(OH)3‐9]. It is concluded here that PQH2‐9 serves as an efficient 1O2 chemical quencher in Arabidopsis, and PQ(OH)3‐9 can be considered as a natural product of 1O2 reaction with PQ(OH)‐9. The understanding of the mechanisms underlying 1O2 chemical quenching provides information on the role of plastoquinols and their oxidation products in the response of plants to photooxidative stress.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号