首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   21693篇
  免费   345篇
  国内免费   655篇
  2023年   1159篇
  2022年   795篇
  2021年   549篇
  2020年   354篇
  2019年   724篇
  2018年   688篇
  2017年   631篇
  2016年   195篇
  2015年   222篇
  2014年   354篇
  2013年   389篇
  2012年   166篇
  2011年   1492篇
  2010年   403篇
  2009年   464篇
  2008年   469篇
  2007年   551篇
  2006年   487篇
  2005年   471篇
  2004年   644篇
  2003年   467篇
  2002年   667篇
  2001年   1048篇
  2000年   1009篇
  1999年   1053篇
  1998年   1088篇
  1997年   976篇
  1996年   485篇
  1995年   240篇
  1994年   144篇
  1993年   128篇
  1992年   109篇
  1991年   123篇
  1990年   97篇
  1989年   101篇
  1988年   98篇
  1987年   92篇
  1985年   201篇
  1984年   478篇
  1983年   454篇
  1982年   375篇
  1981年   348篇
  1980年   361篇
  1979年   341篇
  1978年   207篇
  1977年   176篇
  1976年   167篇
  1975年   152篇
  1974年   126篇
  1973年   93篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
61.
Mutations in the LCAT gene cause familial LCAT deficiency (Online Mendelian Inheritance in Man ID: #245900), a very rare metabolic disorder. LCAT is the only enzyme able to esterify cholesterol in plasma, whereas sterol O-acyltransferases 1 and 2 are the enzymes esterifying cellular cholesterol in cells. Despite the complete lack of LCAT activity, patients with familial LCAT deficiency exhibit circulating cholesteryl esters (CEs) in apoB-containing lipoproteins. To analyze the origin of these CEs, we investigated 24 carriers of LCAT deficiency in this observational study. We found that CE plasma levels were significantly reduced and highly variable among carriers of two mutant LCAT alleles (22.5 [4.0–37.8] mg/dl) and slightly reduced in heterozygotes (218 [153–234] mg/dl). FA distribution in CE (CEFA) was evaluated in whole plasma and VLDL in a subgroup of the enrolled subjects. We found enrichment of C16:0, C18:0, and C18:1 species and a depletion in C18:2 and C20:4 species in the plasma of carriers of two mutant LCAT alleles. No changes were observed in heterozygotes. Furthermore, plasma triglyceride-FA distribution was remarkably similar between carriers of LCAT deficiency and controls. CEFA distribution in VLDL essentially recapitulated that of plasma, being mainly enriched in C16:0 and C18:1, while depleted in C18:2 and C20:4. Finally, after fat loading, chylomicrons of carriers of two mutant LCAT alleles showed CEs containing mainly saturated FAs. This study of CEFA composition in a large cohort of carriers of LCAT deficiency shows that in the absence of LCAT-derived CEs, CEs present in apoB-containing lipoproteins are derived from hepatic and intestinal sterol O-acyltransferase 2.  相似文献   
62.
Dinitrosyliron complexes (DNIC) have been found in a variety of pathological settings associated with NO. However, the iron source of cellular DNIC is unknown. Previous studies on this question using prolonged NO exposure could be misleading due to the movement of intracellular iron among different sources. We here report that brief NO exposure results in only barely detectable DNIC, but levels increase dramatically after 1–2 h of anoxia. This increase is similar quantitatively and temporally with increases in the chelatable iron, and brief NO treatment prevents detection of this anoxia-induced increased chelatable iron by deferoxamine. DNIC formation is so rapid that it is limited by the availability of NO and chelatable iron. We utilize this ability to selectively manipulate cellular chelatable iron levels and provide evidence for two cellular functions of endogenous DNIC formation, protection against anoxia-induced reactive oxygen chemistry from the Fenton reaction and formation by transnitrosation of protein nitrosothiols (RSNO). The levels of RSNO under these high chelatable iron levels are comparable with DNIC levels and suggest that under these conditions, both DNIC and RSNO are the most abundant cellular adducts of NO.  相似文献   
63.
Drug resistance is a critical obstacle to effective treatment in patients with chronic myeloid leukemia. To understand the underlying resistance mechanisms in response to imatinib mesylate (IMA) and adriamycin (ADR), the parental K562 cells were treated with low doses of IMA or ADR for 2 months to generate derivative cells with mild, intermediate, and severe resistance to the drugs as defined by their increasing resistance index. PulseDIA-based (DIA [data-independent acquisition]) quantitative proteomics was then employed to reveal the proteome changes in these resistant cells. In total, 7082 proteins from 98,232 peptides were identified and quantified from the dataset using four DIA software tools including OpenSWATH, Spectronaut, DIA-NN, and EncyclopeDIA. Sirtuin signaling pathway was found to be significantly enriched in both ADR-resistant and IMA-resistant K562 cells. In particular, isocitrate dehydrogenase (NADP(+)) 2 was identified as a potential drug target correlated with the drug resistance phenotype, and its inhibition by the antagonist AGI-6780 reversed the acquired resistance in K562 cells to either ADR or IMA. Together, our study has implicated isocitrate dehydrogenase (NADP(+)) 2 as a potential target that can be therapeutically leveraged to alleviate the drug resistance in K562 cells when treated with IMA and ADR.  相似文献   
64.
65.
Myosin associated with the male germ cells of angiosperms interacts with actin, promoting transport of the non-motile generative and later sperm cells in the pollen tube. Myosin localizing on the sperm cell plasma membrane seems negligible in Plumbago, as reflected by the absence of: (i) anti-myosin labeling using immunoelectron microscopy, (ii) sperm motility on actin matrices, and (iii) electrophoretic movement changes after addition of antibody. Sperm cells injected directly into actively streaming Nitella internodal cells, however, follow actin bundles and their movement is sensitive to ATP and Mg2+. This may be based on simple charge binding since negatively charged latex beads also migrate on actin, whereas neutral or positively-charged latex beads do not. Sperm cells are negatively charged according to capillary microelectrophoresis, whereas killed sperm cells, which are positively charged do not migrate. The sperm cell that normally fertilizes the egg has a higher calculated charge (8.277 × 103 esu/cm2) compared with the sperm cell that fuses with the central cell (6.120 × 103 esu/cm2). Received: 15 December 1998 / Accepted: 21 January 1999  相似文献   
66.
 Analyses of ITS sequences for 49 species of Olearia, including representatives from all currently recognised intergeneric sections, and 43 species from 23 other genera of Astereae, rooted on eight sequences from Anthemideae, provide no support for the monophyly of this large and morphologically diverse Australasian genus. Eighteen separate lineages of Olearia are recognised, including seven robust groups. Three of these groups and another eight species are placed within a primary clade incorporating representatives of Achnophora, Aster, Brachyscome, Calotis, Camptacra, Erigeron, Felicia, Grangea, Kippistia, Lagenifera, Minuria, Oritrophium, Peripleura, Podocoma, Remya, Solidago, Tetramolopium and Vittadinia. The remaining four groups and three individual species lie within a sister clade that also includes Celmisia, Chiliotrichum, Damnamenia, Pleurophyllum and Pachystegia. Relationships within each primary clade are poorly resolved. There is some congruence between this molecular estimate of the phylogeny and the distribution of types of abaxial leaf-hair, which is the basis of the present sectional classification of Olearia, but all states appear to have arisen more than once within the tribe. It is concluded that those species placed within the second primary clade should be removed from the genus, but the extent to which species placed within the first primary clade constitute a monophyletic group can only be resolved with further sequence data. Received November 12, 2001; accepted April 29, 2002 Published online: November 22, 2002 Addresses of authors: Edward W. Cross, Centre for Plant Biodiversity Research, CSIRO, GPO Box 1600, Canberra, ACT 2601, Australia (E-mail: ed.cross@csiro.au); Christopher J . Quinn, Royal Botanic Gardens, Mrs Macquaries Rd., Sydney, NSW 2000, Australia; Steven J. Wagstaff, Landcare Research, PO Box 69, Lincoln 8152, New Zealand.  相似文献   
67.
68.
Aspergillus flavus is a common saprophytic and pathogenic fungus, and its secondary metabolic pathways are one of the most highly characterized owing to its aflatoxin (AF) metabolite affecting global economic crops and human health. Different natural environments can cause significant variations in AF synthesis. Succinylation was recently identified as one of the most critical regulatory post-translational modifications affecting metabolic pathways. It is primarily reported in human cells and bacteria with few studies on fungi. Proteomic quantification of lysine succinylation (Ksuc) exploring its potential involvement in secondary metabolism regulation (including AF production) has not been performed under natural conditions in A. flavus. In this study, a quantification method was performed based on tandem mass tag labeling and antibody-based affinity enrichment of succinylated peptides via high accuracy nano-liquid chromatography with tandem mass spectrometry to explore the succinylation mechanism affecting the pathogenicity of naturally isolated A. flavus strains with varying toxin production. Altogether, 1240 Ksuc sites in 768 proteins were identified with 1103 sites in 685 proteins quantified. Comparing succinylated protein levels between high and low AF-producing A. flavus strains, bioinformatics analysis indicated that most succinylated proteins located in the AF biosynthetic pathway were downregulated, which directly affected AF synthesis. Versicolorin B synthase is a key catalytic enzyme for heterochrome B synthesis during AF synthesis. Site-directed mutagenesis and biochemical studies revealed that versicolorin B synthase succinylation is an important regulatory mechanism affecting sclerotia development and AF biosynthesis in A. flavus. In summary, our quantitative study of the lysine succinylome in high/low AF-producing strains revealed the role of Ksuc in regulating AF biosynthesis. We revealed novel insights into the metabolism of AF biosynthesis using naturally isolated A. flavus strains and identified a rich source of metabolism-related enzymes regulated by succinylation.  相似文献   
69.
70.
Ablation of rat myenteric plexus with benzalkonium chloride has provided a model of intestinal aganglionosis, but the degenerative responses are not well understood. We examined the effects of this detergent on neurons and glia, including expression of c-Myc, c-Jun, JunB, and c-Fos, and on immunocytes in the guinea-pig ileum. Benzalkonium chloride (0.1%) or saline was applied to the serosal surface of distal ileum. Tissues were analyzed 2, 3, or 7 days later and compared with cyclosporine-treated and untreated animals. More than 90% of myenteric neurons were destroyed in ileal segments 3–7 days after benzalkonium-chloride treatment. Glia withdrew processes from around neurons after 2 days and were mostly gone after 3 days. Neuronal c-Myc began to disappear while c-Fos, c-Jun, and JunB were evident in some neuronal nuclei after 2 or 3 days. After 3 days, widespread apoptosis was evident in the myenteric plexus. Populations of T cells, B cells, and macrophage-like cells in untreated and saline-treated myenteric plexuses were substantially increased 3 and 7 days after benzalkonium-chloride treatment. Cyclosporine delayed significant neuronal loss. We conclude that a variety of degenerative mechanisms may be active in this model, including an immune response which may actively contribute to tissue destruction. Received: 13 September 1996 / Accepted: 20 January 1997  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号