首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   746篇
  免费   143篇
  国内免费   5篇
  894篇
  2023年   5篇
  2022年   8篇
  2021年   15篇
  2020年   55篇
  2019年   63篇
  2018年   75篇
  2017年   42篇
  2016年   31篇
  2015年   21篇
  2014年   40篇
  2013年   68篇
  2012年   64篇
  2011年   76篇
  2010年   37篇
  2009年   47篇
  2008年   46篇
  2007年   39篇
  2006年   31篇
  2005年   29篇
  2004年   23篇
  2003年   23篇
  2002年   22篇
  2001年   12篇
  2000年   1篇
  1999年   5篇
  1998年   2篇
  1997年   2篇
  1994年   1篇
  1992年   1篇
  1991年   1篇
  1987年   1篇
  1984年   1篇
  1983年   1篇
  1982年   3篇
  1980年   1篇
  1979年   1篇
  1977年   1篇
排序方式: 共有894条查询结果,搜索用时 0 毫秒
81.
82.
83.
The beneficial function of gastrodin towards many inflammatory diseases has been identified. This study designed to see the influence of gastrodin in a cell model of chronic obstructive pulmonary disease (COPD). MRC‐5 cells were treated by LPS, before which gastrodin was administrated. The effects of gastrodin were evaluated by conducting CCK‐8, FITC‐PI double staining, Western blot, qRT‐PCR and ELISA. Besides this, the downstream effector and signalling were studied to decode how gastrodin exerted its function. And dual‐luciferase assay was used to detect the targeting link between miR‐103 and lipoprotein receptor‐related protein 1 (LRP1). LPS induced apoptosis and the release of MCP‐1, IL‐6 and TNF‐α in MRC‐5 cells. Pre‐treating MRC‐5 cells with gastrodin attenuated LPS‐induced cell damage. Meanwhile, p38/JNK and NF‐κB pathways induced by LPS were repressed by gastrodin. miR‐103 expression was elevated by gastrodin. Further, the protective functions of gastrodin were attenuated by miR‐103 silencing. And LRP1 was a target of miR‐103 and negatively regulated by miR‐103. The in vitro data illustrated the protective function of gastrodin in LPS‐injured MRC‐5 cells. Gastrodin exerted its function possibly by up‐regulating miR‐103 and modulating p38/JNK and NF‐κB pathways.  相似文献   
84.
Inflammaging plays an important role in most age‐related diseases. However, the mechanism of inflammaging is largely unknown, and therapeutic control of inflammaging is challenging. Human alpha‐1 antitrypsin (hAAT) has immune‐regulatory, anti‐inflammatory, and cytoprotective properties as demonstrated in several disease models including type 1 diabetes, arthritis, lupus, osteoporosis, and stroke. To test the potential anti‐inflammaging effect of hAAT, we generated transgenic Drosophila lines expressing hAAT. Surprisingly, the lifespan of hAAT‐expressing lines was significantly longer than that of genetically matched controls. To understand the mechanism underlying the anti‐aging effect of hAAT, we monitored the expression of aging‐associated genes and found that aging‐induced expressions of Relish (NF‐?B orthologue) and Diptericin were significantly lower in hAAT lines than in control lines. RNA‐seq analysis revealed that innate immunity genes regulated by NF‐kB were significantly and specifically inhibited in hAAT transgenic Drosophila lines. To confirm this anti‐inflammaging effect in human cells, we treated X‐ray‐induced senescence cells with hAAT and showed that hAAT treatment significantly decreased the expression and maturation of IL‐6 and IL‐8, two major factors of senescence‐associated secretory phenotype. Consistent with results from Drosophila,RNA‐seq analysis also showed that hAAT treatment significantly inhibited inflammation related genes and pathways. Together, our results demonstrated that hAAT significantly inhibited inflammaging in both Drosophila and human cell models. As hAAT is a FDA‐approved drug with a confirmed safety profile, this novel therapeutic potential may make hAAT a promising candidate to combat aging and aging‐related diseases.  相似文献   
85.
Metabolism of bone is regulated by the balance between osteoblast‐mediated bone formation and osteoclast‐mediated bone resorption. Activation of osteoclasts could lead to osteoporosis. Thus, inhibiting the activity of osteoclasts becomes an available strategy for the treatment of osteoporosis. Tectorigenin is an extract of Belamcanda chinensis In the present study, the anti‐osteoclastogenesis effects of tectorigenin were investigated in vitro and in vivo. The results showed preventive and therapeutic effects of tectorigenin at concentrations of 0, 10, 40, and 80 μmol/L in the maturation and activation of osteoclasts. A signalling study also indicated that tectorigenin treatment reduces activation of NF‐κB signalling in osteoclastogenesis. Animal experiment demonstrated that tectorigenin treatment (1‐10 mg/kg, abdominal injection every 3 days) significantly inhibits bone loss in ovariectomized C57BL/6. Our data suggest that tectorigenin is a potential pharmacological choice for osteoporosis.  相似文献   
86.
Cyclophilin-40 (CyP40) is part of the immunophilin family and is found in Hsp90-containing protein complexes. We were interested in identifying proteins that interact with CyP40. CyP40-interacting proteins in HeLa cells were identified using the tandem affinity purification approach. Adenovirus expressing human CyP40 protein (Ad–CyP40), fused with streptavidin and calmodulin binding peptides at the N terminus, was generated. Proteins were separated on a sodium dodecyl sulfate–polyacrylamide gel electrophoresis gel after tandem affinity purification. Here 10 silver-stained protein bands that were enriched in the Ad–CyP40-infected lysate and the corresponding regions in the control lysate were excised, digested by trypsin, and identified by tandem mass spectrometric analysis. Of 11 interacting proteins that were identified, 4 (RACK1, Ku70, RPS3, and NF45) were expressed in rabbit reticulocyte lysate, bacteria, and MCF-7 cells. We confirmed that these proteins interact with CyP40. We observed that RACK1 suppressed the cobalt chloride-induced, hypoxia response element-dependent luciferase activity in MCF-7 cells but not in MCF-7 stable cells expressing approximately 10% of the cellular CyP40 content. In addition, RACK1 reduced the HIF-1α protein accumulation after cobalt chloride treatment, which was not observed when the CyP40 content was down-regulated. Collectively, we conclude that reduction of the HIF-1α protein by RACK1 is CyP40-mediated.  相似文献   
87.
88.
89.
We had previously identified that the co‐expression of transmembrane CXCL16 (TM‐CXCL16) and its receptor CXCR6 is an independent risk factor for poor survival in patients with diffuse large B‐cell lymphoma (DLBCL). However, the impact of the soluble form of CXCL16 (sCXCL16) on the pathogenesis of DLBCL remains unknown. In the present study, the synergistic effect of sCXCL16 and tumor necrosis factor α (TNF‐α) on apoptosis in DLBCL cell lines (OCI‐LY8 and OCI‐LY10) was investigated in vitro. sCXCL16 reinforced TNF‐α‐mediated inhibition of DLBCL cell proliferation, as determined by the cell counting kit‐8 assay. The results of annexin V staining showed that sCXCL16 enhanced TNF‐α‐induced apoptosis in OCI‐LY8 and OCI‐LY10 cells through a death receptor‐caspase signaling pathway. The results of gene microarray suggested a significant upregulation of differentially expressed genes in the TNF signaling pathway. sCXCL16 increased the concentration of extracellular TNF‐α by binding to CXCR6 to activate the nuclear factor‐κB (NF‐κB) signaling pathway. TNF‐α also induced the secretion of sCXCL16 by increasing the expression of ADAM10, which is known to cleave TM‐CXCL16 to yield sCXCL16. Moreover, bioinformatics analysis revealed that elevated TNF‐α and ADAM10 expression levels in tumor tissues predicted better survival in patients with DLBCL. Thus, our study suggests that sCXCL16 enhances TNF‐α‐induced apoptosis of DLBCL cells, which may involve a positive feedback loop consisting of TNF‐α, ADAM10, sCXCL16, and members of the NF‐κB pathway. sCXCL16 and TNF‐α may be used as prognostic markers in the clinic, and their combinational use is a promising approach in the context of DLBCL therapy.  相似文献   
90.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号