首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   45771篇
  免费   1704篇
  国内免费   2011篇
  2023年   393篇
  2022年   570篇
  2021年   710篇
  2020年   811篇
  2019年   1481篇
  2018年   1004篇
  2017年   769篇
  2016年   814篇
  2015年   1112篇
  2014年   1841篇
  2013年   2760篇
  2012年   1397篇
  2011年   2062篇
  2010年   1588篇
  2009年   2151篇
  2008年   2113篇
  2007年   2313篇
  2006年   2074篇
  2005年   1818篇
  2004年   1562篇
  2003年   1259篇
  2002年   1132篇
  2001年   818篇
  2000年   810篇
  1999年   776篇
  1998年   714篇
  1997年   698篇
  1996年   597篇
  1995年   742篇
  1994年   717篇
  1993年   708篇
  1992年   702篇
  1991年   633篇
  1990年   599篇
  1989年   586篇
  1988年   574篇
  1987年   591篇
  1986年   343篇
  1985年   593篇
  1984年   1014篇
  1983年   811篇
  1982年   1074篇
  1981年   710篇
  1980年   713篇
  1979年   710篇
  1978年   303篇
  1977年   281篇
  1976年   250篇
  1975年   210篇
  1974年   162篇
排序方式: 共有10000条查询结果,搜索用时 281 毫秒
191.
The feeding behaviour of the freshwater piscivore, Clarias gariepinus (C. lazera) (C & V 1840) was studied over two periods: 1973–1975 and 1981–1982, in Lake Kinneret (Israel). The total number of fish analysed was 264 and their sizes (SL) and weights varied between 238 and 830 mm (146 to 5728 g). More than fifty species of plants and animals from the plankton, benthos and nekton of Lake Kinneret were identified in the intestines of C. gariepinus. Preyed fish were the most abundant food component (81%) and constituted the highest biomass, with Mirogrex terraesanctae representing the majority (although other species were also found). The potential impact of piscivory in the Kinneret ecosystem is considered.  相似文献   
192.
Subcellular Location and Neuronal Release of Diazepam Binding Inhibitor   总被引:6,自引:0,他引:6  
Diazepam binding inhibitor (DBI), a peptide located in CNS neurons, blocks the binding of benzodiazepines and beta-carbolines to the allosteric modulatory sites of gamma-aminobutyric acid (GABAA) receptors. Subcellular fractionation studies of rat brain indicate that DBI is compartmentalized. DBI-like immunoreactivity is highly enriched in synaptosomes obtained by differential centrifugation in isotonic sucrose followed by a Percoll gradient. In synaptosomal lysate, DBI-like immunoreactivity is primarily associated with synaptic vesicles partially purified by differential centrifugation and continuous sucrose gradient. Depolarization induced by high K+ levels (50 mM) or veratridine (50 microM) released DBI stored in neurons of superfused slices of hypothalamus, hippocampus, striatum, and cerebral cortex. The high K+ level-induced release is Ca2+ dependent, and the release induced by veratridine is blocked by 1.7 microM tetrodotoxin. Depolarization released GABA and Met5-enkephalin-Arg6-Phe7 together with DBI. DBI is also released by veratridine depolarization, in a tetrodotoxin-sensitive fashion, from primary cultures of cerebral cortical neurons, but not from cortical astrocytes. Depolarization fails to release DBI from slices of liver and other peripheral organs. These data support the view that DBI may be released as a putative neuromodulatory substance from rat brain neurons.  相似文献   
193.
To elucidate the position of the peptide bond in glutamyl-taurine this dipeptide was extracted from calf brain synaptic vesicles and subjected to paper electrophoresis. It was analyzed further in an automatic amino acid analyzer prior and subsequent to acid hydrolysis. Both alpha- and gamma-forms were found to be present in approximately equal amounts.  相似文献   
194.
Although [3H]imipramine is a selective radioligand for the 5-hydroxytryptamine (5-HT) transporter in human platelets, its affinity for binding to the 5-HT transporter complex at 0 degrees C (0.6 nM) is significantly higher than its potency for inhibition of [3H]5-HT uptake at the physiological temperature of 37 degrees C (Ki = 29 nM). As this apparent discrepancy could be related to the assay temperature, we studied the thermodynamics of drug interaction with the 5-HT transporter at assay temperatures between 0 degrees C and 37 degrees C, using as radioligands [3H]imipramine (0 degrees C and 20 degrees C) and [3H]paroxetine (20 degrees C and 37 degrees C), a newly available probe for the 5-HT transporter. At 20 degrees C, Ki values of 14 tricyclic and nontricyclic drugs for inhibition of [3H]imipramine and [3H]paroxetine binding to human platelet membranes were highly significantly correlated (r = 0.98, p less than 0.001), validating the use of these two radioligands to study the 5-HT transporter over a temperature range larger than was previously possible with [3H]imipramine alone. The affinity of imipramine for the 5-HT transporter is progressively enhanced with decreasing incubation temperature, thus favoring the selectivity of [3H]imipramine for the 5-HT transporter at 0 degrees C. At 37 degrees C, the Ki of imipramine for inhibition of [3H]paroxetine binding is 32 nM, and equals its Ki value for inhibition of 5-HT uptake into human platelets. With the exception of chlorimipramine, other tricyclic 5-HT uptake inhibitors showed a temperature sensitivity in their interaction with the 5-HT transporter similar to that of imipramine.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   
195.
The binding of [3H]dipyridamole ([3H]DPR) to guinea pig brain membranes is described and compared to that of [3H]nitrobenzylthioinosine ([3H]NBI). The binding of [3H]DPR is saturable, reversible, and specific with pharmacologic evidence indicating that this ligand is binding to the adenosine uptake site. Compared to [3H]NBI the binding of [3H]DPR is of higher capacity (Bmax = 208 +/- 16 fmol/mg protein for [3H]NBI and 530 +/- 40 fmol/mg protein for [3H]DPR) and lower affinity (KD = 0.35 +/- 0.02 nM for [3H]NBI and 7.6 +/- 0.7 nM for [3H]DPR). The adenosine uptake inhibitors are the most potent inhibitors of binding (Ki of 10(-8)-10(-7) M) whereas adenosine receptor ligands such as cyclohexyladenosine, 2-chloroadenosine, and various methylxanthines are several orders of magnitude less potent (Ki 10(-5)-10(-2). The inhibition of [3H]DPR binding by NBI is biphasic, with only 40% of binding being susceptible to inhibition of NBI concentrations less than 10(-5) M. The tissue distribution of [3H]DPR binding parallels that of [3H]NBI although in most cases significantly more sites are observed with [3H]DPR. Calcium channel blocking agents such as nifedipine, nimodipine, and verapamil are also inhibitors of [3H]DPR binding with potencies in the micromolar range. The data are consistent with [3H]DPR being a useful additional ligand for the adenosine uptake site and provide evidence that multiple uptake binding sites exist of which only about 40% are NBI-sensitive.  相似文献   
196.
Synaptosomes prepared from rat cerebral cortex and labeled with [3H]noradrenaline (NA) were superfused with calcium-free Krebs-Ringer-bicarbonate medium and exposed to 10 mM K+ plus 0.1 mM Ca2+ so that [3H]NA release was induced. 6,7-Dihydroxy-N,N-dimethyl-2-aminotetralin (TL-99) strongly inhibited synaptosomal K+-induced [3H]NA release (EC50 = 5-10 nM) by activating alpha 2-adrenoceptors. Release was also inhibited (maximally by 40-50%) by morphine (EC50 = 5-10 nM), [Leu5]enkephalin (EC50 = approximately 300 nM), [D-Ala2,D-Leu5]enkephalin (DADLE), and Tyr-D-Ala-Gly-(NMe)Phe-Gly-ol (DAGO) (EC50 values = approximately 30 nM). In contrast to the mu-selective opioid receptor agonists morphine and DAGO, the highly delta-selective agonist [D-Pen2,D-Pen5]enkephalin (1 microM) did not affect [3H]-NA release. Furthermore, the inhibitory effect of DADLE, an agonist with affinity for both delta- and mu-opioid receptors, was antagonized by low concentrations of naloxone. The findings strongly support the view that, like alpha 2-adrenoceptors, mu-opioid receptors mediating inhibition of NA release in the rat cerebral cortex are localized on noradrenergic nerve terminals.  相似文献   
197.
Tyrosine hydroxylase purified from rat pheochromocytoma was phosphorylated and activated by purified cyclic GMP-dependent protein kinase as well as by cyclic AMP-dependent protein kinase catalytic subunit. The extent of activation was correlated with the degree of phosphate incorporated into the enzyme. Comparable stoichiometric ratios (0.6 mol phosphate/mol tyrosine hydroxylase subunit) were obtained at maximal concentrations of either cyclic AMP-dependent or cyclic GMP-dependent protein kinases. The enzymes appeared to mediate the phosphorylation of the same residue based on the observation that incorporation was not increased when both enzymes were present. The major tryptic phosphopeptide obtained from tyrosine hydroxylase phosphorylated by each protein kinase exhibited an identical retention time following HPLC. The purified phosphopeptides also exhibited identical isoelectric points. These data provide support for the notion that the protein kinases are phosphorylating the same residue of tyrosine hydroxylase.  相似文献   
198.
Stimulation of glutamate binding by the dipeptide L-phenylalanyl-L-glutamate (Phe-Glu) was inhibited by the peptidase inhibitor bestatin, suggesting that the stimulation was caused by glutamate liberated from the dipeptide and not by the dipeptide itself. It further suggests that this form of glutamate binding should be reinterpreted as glutamate sequestration and that stimulation of binding both by dipeptides and after preincubation with high concentrations of glutamate is likely to be due to counterflow accumulation. Several other criteria indicate that most of glutamate binding stimulated by chloride represents glutamate sequestration: Binding is reduced when the osmolarity of the incubation medium is increased, when membranes incubated with [3H]glutamate are lysed before filtration, and when membranes are made permeable by transient exposure to saponin. Moreover, dissociation of bound glutamate after a 100-fold dilution of the incubation medium is accelerated about 50 times by the addition of glutamate to the dilution medium. This result would be anomalous if glutamate were bound to a receptor site; it suggests instead that glutamate is transported in and out of membrane vesicles by a transport system that preferentially mediates exchange between internal and external glutamate. Glutamate binding contains a component of glutamate sequestration even when measured in the absence of chloride. Sequestration is adequately abolished only after treating membranes with detergents; even extensive lysis, sonication, and freezing/thawing may be insufficient.  相似文献   
199.
Rubrophilin, a unique brain specific polypeptide, was purified to apparent homogeneity from microsomal fractions of bovine brains. The peptide stains pink with Coomassie Brilliant Blue R-250 (C.I. No. 42660) under specific conditions, has an apparent Mr of 53,000, and is acidic with an apparent pI of 4.9. The purification involves initial solubilization of delipidated microsomes in sodium dodecyl sulfate, followed by ammonium sulfate fractionation, reversed ammonium sulfate gradient elution from diatomaceous earth, gel filtration on polyacrylamide (Biogel P-200), gradient elution chromatography from hydroxylapatite, and reverse-phase chromatography from phenyl-Sepharose. A yield of about 5 mg of rubrophilin was obtained from 9 g of microsomal proteins. Amino acid analysis shows that rubrophilin contains only nine amino acids with residues/mol as follows: alanine (102), glutamic acid (97), lysine (65), proline (55), aspartic acid (48), glycine (44), serine (37), threonine (35), and valine (10). Cysteine, methionine, tryptophan, tyrosine, isoleucine, phenylalanine, histidine, and arginine could not be detected. Relative rubrophilin content of vertebrate brains was as follows: mammals greater than birds greater than reptiles greater than fishes. It is present in mouse retina and human neuroblastoma cell cultures but could not be detected in octopus optic lobe or in cultured C-6 rat glioma cells.  相似文献   
200.
Phosphatidylinositol phosphodiesterase (PL-C) appears to be a key element in the adrenergic regulation of pineal cyclic AMP levels. In the present study, the rat pineal enzyme was characterized using exogenous [3H]phosphatidylinositol (0.5 mM) as substrate. Half the enzyme activity was found in the cytosolic fraction, but the highest specific concentration was associated with the membrane fraction. Two pH optima (5.5 and 7.5) of enzyme activity were observed for the membrane fraction but only one in the cytosol fraction (pH 5.5). Enzyme activity in both fractions was Ca2+ dependent. In the case of the membrane protein in pH 7.5, the enzyme activity was sensitive to changes in Ca2+ in the 10-100 nM range. Addition of an equimolar concentration of phosphatidylinositol 4-phosphate nearly completely inhibited the hydrolysis of [3H]phosphatidylinositol; other phospholipids (1.0 mM) were less potent. This may reflect our present finding that [3H]phosphatidylinositol 4-phosphate is a better substrate than [3H]phosphatidylinositol for the enzyme. Stimulus deprivation (2 weeks of constant light or superior cervical ganglionectomy) reduced the cytosolic activity by 30% and had no effect on the membrane-associated enzyme.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号