首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   38546篇
  免费   1263篇
  国内免费   1745篇
  41554篇
  2023年   265篇
  2022年   362篇
  2021年   476篇
  2020年   584篇
  2019年   1188篇
  2018年   727篇
  2017年   568篇
  2016年   610篇
  2015年   865篇
  2014年   1425篇
  2013年   2188篇
  2012年   1059篇
  2011年   1668篇
  2010年   1296篇
  2009年   1822篇
  2008年   1784篇
  2007年   1982篇
  2006年   1758篇
  2005年   1552篇
  2004年   1274篇
  2003年   1022篇
  2002年   918篇
  2001年   688篇
  2000年   706篇
  1999年   677篇
  1998年   627篇
  1997年   608篇
  1996年   510篇
  1995年   667篇
  1994年   651篇
  1993年   646篇
  1992年   652篇
  1991年   577篇
  1990年   558篇
  1989年   546篇
  1988年   550篇
  1987年   569篇
  1986年   321篇
  1985年   538篇
  1984年   941篇
  1983年   769篇
  1982年   1006篇
  1981年   658篇
  1980年   672篇
  1979年   674篇
  1978年   269篇
  1977年   254篇
  1976年   219篇
  1975年   191篇
  1974年   146篇
排序方式: 共有10000条查询结果,搜索用时 0 毫秒
991.
The effect of NADP+ on light-induced steady-state redox changes of membrane-bound cytochromes was investigated in membrane fragments prepared from the blue-green algae Nostoc muscorum (Strain 7119) that had high rates of electron transport from water to NADP+ and from an artificial electron donor, reduced dichlorophenolindophenol (DCIPH2) to NADP+. The membrane fragments contained very little phycocyanin and had excellent optical properties for spectrophotometric assays. With DCIPH2 as the electron donor, NADP+ had no effect on the light-induced redox changes of cytochromes: with or without NADP+, 715- or 664-nm illumination resulted mainly in the oxidation of cytochrome f and of other component(s) which may include a c-type cytochrome with an α peak at 549 nm. With 664 nm illumination and water as the electron donor, NADP+ had a pronounced effect on the redox state of cytochromes, causing a shift toward oxidation of a component with a peak at 549 nm (possibly a c-type cytochrome), cytochrome f, and particularly cytochrome b559. Cytochrome b559 appeared to be a component of the main noncyclic electron transport chain and was photooxidized at physiological temperatures by Photosystem II. This photooxidation was apparent only in the presence of a terminal acceptor (NADP+) for the electron flow from water.  相似文献   
992.
Three forms of ferredoxin FdI, FdI′, and FdII have been isolated from Desulfovibrio gigas, a sulfate reducer. They are separated by a combination of DEAE-cellulose and gel filtration chromatographic procedures. FdI and FdI′ present a slight difference in isoelectric point which enables the separation of the two forms over DEAE-cellulose, while FdII is easily separated from the two other forms by gel filtration. The three forms have the same amino acid composition and are isolated in different aggregation states. Molecular weight determinations by gel filtration gave values of 18 000 for FdI and FdI′ and 24 000 for FdII, whereas a value of 6000 is determined when dissociation is accomplished with sodium dodecyl sulfate. The electronic spectra are different and their ultraviolet-visible absorbance rations are 0.77, 0.87 and 0.68 respectively for FdI, FdI′ and FdII. Despite these differences, the physiological activities of the three forms are similar as far as the reduction of sulfite by molecular hydrogen is concerned.  相似文献   
993.
994.
G. Kulandaivelu  D.O. Hall 《BBA》1976,430(1):46-52
The addition of α-benzyl-α-bromomalodinitrile to different controlled states (non-phosphorylating [2]. phosphorylating [3], ATP-inhibited [4] and uncoupled) of photosynthetic electron transport to ferricyanide or benzoquinone demonstrate a significant inhibition in isolated spinach chloroplasts. α-Benzyl-α-bromomalodinitrile pretreatement of isolated chloroplasts or addition of α-benzyl-α-bromomalodinitrile at the onset of illumination completely abolished the O2 evolving reaction. The level of the steady state fluorescence in intact chloroplasts showed a α-benzyl-α-bromomalodinitrile concentration-dependent increase. The gradual decrease in the reoxidation capacity of the reduced quencher, Q with increasing α-benzyl-α-bromomalodinitrile concentrations provides evidence for an additional inhibitory site for α-benzyl-α-bromomalodinitrile between the two photosystems.  相似文献   
995.
C.L. Bering  R.A. Dilley  F.L. Crane 《BBA》1976,430(2):327-335
Lipophilic metal chelators inhibit various energy-transducing functions of chloroplasts. The following observations were made.1. Photophosphorylation coupled to any known mode of electron transfer, i.e. whole-chain noncyclic, the partial noncyclic Photosystem I or Photosystem II reactions, or cyclic, is inhibited by several lipophilic chelators, but not by hydrophilic chelators.2. The light- and dithioerythritol-dependent Mg2+-ATPase was also inhibited by the lipophilic chelators.3. Electron transport through either partial reaction, Photosystem I or Photosystem II was not inhibited by lipophilic chelators. Whole-chain coupled electron transport was inhibited by bathophenanthroline, and the inhibition was not reversed by uncouplers. The diketone chelators diphenyl propanedione and nonanedione inhibited the coupled, whole-chain electron transport and the inhibition was reversed by uncouplers, a pattern typical of energy transfer inhibitors.The electron transport inhibition site is localized in the region of plastoquinone → cytochrome f. This inhibition site is consistent with other recent work (Prince et al. (1975) FEBS Lett. 51, 108 and Malkin and Aparicio (1975) Biochem. Biophys. Res. Commun. 63, 1157) showing that a non-heme iron protein is present in chloroplasts having a redox potential near +290 mV. A likely position for such a component to function in electron transport would be between plastoquinone and cytochrome f, just where our data suggests there to be a functional metalloprotein.4. Some of the lipophilic chelators induce H+ leakiness in the chloroplast membrane, making interpretation of their phosphorylation inhibition difficult. However, 1–3 mM nonanedione does not induce significant H+ leakiness, while inhibiting ATP formation and the Mg2+-ATPase. Nonanedione, at those concentrations, causes a two- to four-fold increase in the extent of H+ uptake.5. These results are consistent with, but do not prove, the involvement of a non-heme iron or a metalloprotein in chloroplast energy transduction.  相似文献   
996.
SYNOPSIS. In low viscosity media, Euglena gracilis strain Z responds to a sudden change in light intensity by a cessation of forward movement, followed by a reorientation of the locomotor flagellum which results in turning of the cell around the lateral axis (photophobic response). At a viscosity interface between low [~ 1 cP (centipoise)] and high (4000 cP) media, the cells exhibit avoidance responses or become immobilized in the higher viscosity medium. Upon changing the light intensity, free swimming cells have photophobic responses, while immobilized ones undergo body contractions. For cells immersed in media of varying viscosity, the delay between light stimulation and body contraction (transduction time) is shortest at high viscosities. From 500 to 2000 cP, where the cells are capable of both movement and light-induced body contractions, there is a logarithmic dependence of the transduction time on the viscosity. The transduction time does not vary appreciably with the intensity of the primary light stimulus within a range of 0.14-1.13 kW/m2.  相似文献   
997.
Summary The presence of uni-, bi- and multipolar neurons beneath the hair cell epithelium of the Octopus gravity receptor system has been demonstrated by iontophoretic cobalt staining. Counts give an average number of 1,940 neurons per macula. Whether the hair cells are primary of secondary sensory cells is discussed.This work was supported by grant Wo 160/3 of the Deutsche Forschungsgemeinschaft (DFG) to H.G.W. Thanks are due to the Director and staff of the Zoological Station in Naples for their hospitality and help  相似文献   
998.
The subcellular distribution of carnitine acetyl-, octanoyl-, and palmitoyltransferase in the livers of normal and clofibrate-treated male rats was studied with isopycnic sucrose density gradient fraction.In normal liver 48% of total carnitine acetyltransferase activity was peroxisomal, 36% of the activity located in mitochondria and 16% in a membranous fraction containing microsomes. Carnitine octanoyltransferase and carnitine palmitoyltransferase were confined almost totally (77–81%) to mitochondria in normal liver.Clofibrate treatment increased the total activity of carnitine acetyltransferase over 30 times, whereas the total activities of the other two transferases were increased only 5-fold.From the three different subcellular carnitine acetyltransferases the mitochondrial one was not responsive to clofibrate treatment, i.e. the rise in mitochondrial activity was over 70-fold as contrasted to the 6- and 14-fold rises in peroxisomal and microsomal activities, respectively. After treatment mitochondria contained 79% of total activity.It is concluded that the clofibrate-induced increase of carnitine acetyltransferase activity is not due to the peroxisomal proliferation that occurs during clofibrate treatment. The rise in peroxisomal activity contributed only 8% to the total increase.After clofibrate treatment the greatest part of carnitine octanoyl- and palmitoyltrnasferase activities were located in mitochondria but a considerable amount of both activities was found also in the soluble fraction of liver.  相似文献   
999.
Introduction     
The only concrete basis for the discontinuous and hierarchical organization of extant organisms lies in their genealogical (i. e. germ line) relationships. Individuals and populations of common descent are called sib or stirps. Ideally, systematic classification is based on the formulas: (1) sib + taxonomic category + name = taxon, and (2) divergent genealogy of sibs + hierarchy of taxonomic categories + names = taxonomic system (Fig. 1).Presented at the symposium Speciation and the Species Concept during the XIIth International Botanical Congress, Leningrad, July 8, 1975.  相似文献   
1000.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号