首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4699篇
  免费   113篇
  国内免费   173篇
  4985篇
  2023年   25篇
  2022年   50篇
  2021年   39篇
  2020年   50篇
  2019年   79篇
  2018年   86篇
  2017年   60篇
  2016年   74篇
  2015年   83篇
  2014年   191篇
  2013年   352篇
  2012年   121篇
  2011年   208篇
  2010年   137篇
  2009年   231篇
  2008年   232篇
  2007年   281篇
  2006年   208篇
  2005年   199篇
  2004年   194篇
  2003年   174篇
  2002年   135篇
  2001年   87篇
  2000年   89篇
  1999年   87篇
  1998年   101篇
  1997年   101篇
  1996年   79篇
  1995年   125篇
  1994年   100篇
  1993年   93篇
  1992年   85篇
  1991年   71篇
  1990年   65篇
  1989年   62篇
  1988年   73篇
  1987年   59篇
  1986年   73篇
  1985年   78篇
  1984年   85篇
  1983年   32篇
  1982年   42篇
  1981年   41篇
  1980年   52篇
  1979年   24篇
  1978年   19篇
  1977年   16篇
  1976年   14篇
  1975年   11篇
  1973年   7篇
排序方式: 共有4985条查询结果,搜索用时 15 毫秒
1.
2.
Free radical mechanisms in enzyme reactions   总被引:1,自引:0,他引:1  
Free radicals are formed in prosthetic groups or amino acid residues of certain enzymes. These free radicals are closely related to the activation process in enzyme catalysis, but their formation does not always result in the formation of substrate free radicals as a product of the enzyme reactions. The role of free radicals in enzyme catalysis is discussed.  相似文献   
3.
The first 12 NH2-terminal amino acids of the Pseudomonas putida putidaredoxin reductase were shown to be Met-Asn-Ala-Asn-Asp-Asn-Val-Val-Ile-Val-Gly-Thr. Comparison of these data with the DNA sequence of the BamHI-HindIII 197-base fragment derived from the PstI 2.2-kb fragment obtained from the P. putida plasmid showed that the putidaredoxin reductase gene was downstream from the cytochrome P-450 gene and the intergenic region had the 24-nucleotide sequence TAAACACATGGGAGTGCGTGCTAA. The Shine-Dalgarno sequence GGAG was detected in this region. The initiating triplet for the reductase gene was GTG, which normally codes for valine, but in the initiating codon position codes for methionine. From the amino acid sequence and X-ray data comparisons with other flavoproteins, what appears to be the AMP binding region of the FAD can be recognized in the NH2-terminal portion of the reductase involving residues 5–35.This article was presented during the proceedings of the International Conference on Macromolecular Structure and Function, held at the National Defence Medical College, Tokorozawa, Japan, December 1985.  相似文献   
4.
Structural variants of mercury reductase containing the N-terminal domain, which is easily cleaved by trypsin, have been found in Gram-positive bacteria with a low genomic G + C content (Bacillus, Staphylococcus and, possibly, some other genera). Mercury reductases without the N-terminal domain and relatively resistant to limited proteolysis are typical for Gram-positive bacteria with a high genomic G + C content (Arthrobacter, Citreobacterium, Micrococcus, Mycobacterium, Rhodococcus). Both types of mercury reductase genes may be located on plasmids.  相似文献   
5.
Nitrosation activity was measured in Escherichia coli isolates and a range of nitrite reductase (nir) mutants. Activity was only detected in intact cells and could be inhibited by a number of treatments such as sonication and osmotic shock. Aerobically-grown cells had highest nitrosation activity compared to oxygen-limited ones. Inclusion of nitrite in growth media induced high activities of nitrite reductase and for some isolates, nitrosation. Analysis of nir mutants identified two which were unable to nitrosate. This result suggested that NADH-dependent nitrite reductase was implicated either directly or indirectly in nitrosation.  相似文献   
6.
7.
The hydrogen reactions of nitrogenase   总被引:2,自引:0,他引:2  
  相似文献   
8.
Coenzyme Q (CoQ0) and other quinones were shown to be potent insulin secretagogues in the isolated pancreatic islet. The order of potency was CoQ0benzoquinonehydroquinonemenadione. CoQ6 and CoQ10 (ubiquinone), duroquinone and durohydroquinone did not stimulate insulin release. CoQ0's insulinotropism was enhanced in calcium-free medium and CoQ0 appeared to stimulate only the second phase of insulin release. CoQ0 inhibited inositol mono-, bis- and trisphosphate formation. Inhibitors of mitochondrial respiration (rotenone, antimycin A, FCCP and cyanide) and the calcium channel blocker verapamil, did not inhibit CoQ0-induced insulin release. Dicumarol, an inhibitor of quinone reductase, did not inhibit CoQ0-induced insulin release, but it did inhibit glucose-induced insulin release suggesting that the enzyme and quinones play a role in glucose-induced insulin release. Quinones may stimulate insulin release by mimicking physiologically-occuring quinones, such as CoQ10, by acting on the plasma membrane or in the cytosol. Exogenous quinones may bypass the quinone reductase reaction, as well as many reactions important for exocytosis.  相似文献   
9.
When grown with nitrate as terminal electron acceptor both the soluble (periplasm, cytoplasm) and the membrane fraction of Spirillum strain 5175 exhibited high nitrite reductase activity. The nitrite reductase obtained from the soluble fraction was purified 76-fold to electrophoretical homogeneity. The enzyme reduced nitrite to ammonia with a specific activity of 723 mol NO inf2 sup- × (mg protein × min)-1. The molecular mass was 58±1 kDa by SDS-PAGE compared to 59±2 kDa determined by size exclusion chromatography under nondenaturing conditions. The enzyme (as isolated) contained 5.97±0.15 heme c molecules/Mr 58 kDa. The absorption spectrum was typical for c-type cytochrome with maxima at 280, 408, 532 and 610 nm (oxidized) and at 420, 523 and 553 nm (dithionite-reduced). The enzyme (as isolated) exhibited a complex set of high-spin and lowspin ferric heme resonances with g-values at 9.82, 3,85, 3.31, 2.95, 2.30 and 1.49 in agreement with data reported for electron paramagnetic resonance spectra of nitrite reductases from Desulfovibrio desulfuricans, Wolinella succinogenes and Escherichia coli.Abbreviations DNRA dissimilatory nitrate reduction to ammonia - EPR electron paramagnetic resonance - PAGE polyacrylamide gel electrophoresis - NaPi sodium phosphate - SDS sodium dodecylsulfate  相似文献   
10.
Abstract Sporopachydermia cereana , an ascosporogenous yeast, grew on dimethylamine, trimethylamine or trimethylamine N -oxide as sole nitrogen sources and produced mono-oxygenases for dimethylamine and trimethylamine that were significantly more stable than the corresponding enzymes found in Candida utilis . No trimethylamine mono-oxygenase activity was found in S. cereana grown on dimethylamine. In cells grown on trimethylamine N -oxide (but not on the other nitrogen sources), evidence for an enzyme metabolizing the N -oxide, possibly an aldolase, but more probably a reductase was obtained. All these activities showed a similar requirement for the presence of FAD or FMN in the extract buffer during isolation to retain activity. Amine mono-oxygenase activities showed a similar sensitivity to inhibitors, including proadifen hydrochloride and carbon monoxide as the corresponding enzymes in C. utilis . The trimethylamine N -oxide-dependent oxidation of NADH was more sensitive to inhibition by EDTA, N -ethylmaleimide and β-phenylethylamine than the mono-oxygenases, and less sensitive to KCN, and activity was significantly higher with NADPH than was observed with the 2 mono-oxygenases.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号