首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2475篇
  免费   48篇
  国内免费   36篇
  2559篇
  2023年   10篇
  2022年   14篇
  2021年   18篇
  2020年   13篇
  2019年   21篇
  2018年   26篇
  2017年   19篇
  2016年   21篇
  2015年   113篇
  2014年   342篇
  2013年   282篇
  2012年   378篇
  2011年   379篇
  2010年   264篇
  2009年   49篇
  2008年   51篇
  2007年   46篇
  2006年   39篇
  2005年   41篇
  2004年   31篇
  2003年   31篇
  2002年   18篇
  2001年   21篇
  2000年   19篇
  1999年   18篇
  1998年   12篇
  1997年   13篇
  1996年   10篇
  1995年   17篇
  1994年   13篇
  1993年   12篇
  1992年   13篇
  1991年   14篇
  1990年   10篇
  1989年   12篇
  1988年   12篇
  1987年   11篇
  1986年   7篇
  1985年   15篇
  1984年   22篇
  1983年   14篇
  1982年   25篇
  1981年   12篇
  1980年   9篇
  1979年   4篇
  1978年   4篇
  1977年   9篇
  1976年   5篇
  1973年   4篇
  1970年   4篇
排序方式: 共有2559条查询结果,搜索用时 15 毫秒
71.
TGF-β is a pleiotropic cytokine that predominantly exerts inhibitory functions in the immune system. Unexpectedly, the in vitro differentiation of both Th17 and Tc17 cells requires TGF-β. However, animals that are impaired in TGF-β signaling (TGF-βRIIDN mice) display multiorgan autoimmune disorders. Here we show that CD4(+) T cells from TGF-βRIIDN mice are resistant to Th17 cell differentiation and, paradoxically, that CD8(+) T cells from these animals spontaneously acquire an IL-17-producing phenotype. Neutralization of IL-17 or depletion of CD8(+) T cells dramatically inhibited inflammation in TGF-βRIIDN mice. Therefore, the absence of TGF-β triggers spontaneous differentiation of IL-17-producing CD8(+) T cells, suggesting that the in vivo and in vitro conditions that promote the differentiation of IL-17-producing CD8(+) T cells are distinct.  相似文献   
72.
73.
74.
High glucose levels induce cell death in many cell types, including pancreatic β-cells. Although protective agents against glucotoxicity have been searched for extensively, so far none have been found. In this report, we tested silk fibroin (SF) as a candidate material for antiglucotoxicity in the pancreatic β-cell (HIT-T15 cell) line. Approximately 50% of cells were killed after treatment with 80 mg/mL glucose. This reduction of cell number was recovered by the addition of SF at 50 mg/mL. SF treatment also decreased cellular reactive oxygen species (ROS) and increased proliferating cellular nuclear antigen (PCNA) immunoreactivity. In addition, TUNEL assays demonstrated that SF protects against glucose-induced apoptosis of HIT-T15 cells, suggesting that SF might protect cells from cell death by lowering cellular ROS levels. SF also induced expression of the insulin-like growth factor-1 (IGF-1) gene, and IGF-1 expression may be the cause of SF-induced protection against glucose toxicity. Taken together, these results suggest that SF could serve as a potential therapeutic agent to treat the hyperglycemia-induced death of pancreatic β-cells.  相似文献   
75.
Members of the mitosporic fungal form-genus Stachybotrys, including common indoor contaminants Stachybotrys chartarum, Stachybotrys echinata and Stachybotrys chlorohalonata, are capable of producing potent, protein synthesis-inhibiting, trichothecene mycotoxins. A combined multi-gene approach was used to investigate relationships among species of Stachybotrys against which the presence/absence of the trichothecene biosynthetic pathway gene, trichodiene synthase (tri5), was evaluated. Phylogenetic analyses partitioned species of Stachybotrys into three strongly supported lineages, two of which contained common indoor taxa. No tri5 PCR product was amplified from members of the third clade, which included the only member of the group with a known sexual state, Stachybotrys albipes. Isolates grouped with S. albipes also tested negative for tri5 in Southern analyses. The phylogenetic distribution of tri5 was consistent with known toxin production for the group. For isolates with tri5 product, Bayesian analysis suggested that signal from amino acid determining sites conflicted with the combined phylogeny. Incongruence however, was not supported by either SH-test results or maximum likelihood analyses. Moreover, sites rates analysis showed that tri5 was highly conserved at the amino acid level suggesting that identity at variable sites, among otherwise divergent taxa, might be the result of chance events.  相似文献   
76.
77.
78.
Cellular biomolecular complexes including protein–protein, protein–RNA, and protein–DNA interactions regulate and execute most biological functions. In particular in brain, protein–protein interactions (PPIs) mediate or regulate virtually all nerve cell functions, such as neurotransmission, cell–cell communication, neurogenesis, synaptogenesis, and synaptic plasticity. Perturbations of PPIs in specific subsets of neurons and glia are thought to underly a majority of neurobiological disorders. Therefore, understanding biological functions at a cellular level requires a reasonably complete catalog of all physical interactions between proteins. An enzyme-catalyzed method to biotinylate proximal interacting proteins within 10 to 300 nm of each other is being increasingly used to characterize the spatiotemporal features of complex PPIs in brain. Thus, proximity labeling has emerged recently as a powerful tool to identify proteomes in distinct cell types in brain as well as proteomes and PPIs in structures difficult to isolate, such as the synaptic cleft, axonal projections, or astrocyte–neuron junctions. In this review, we summarize recent advances in proximity labeling methods and their application to neurobiology.  相似文献   
79.
80.
The inhibition of 2,4-D-induced elongation growth by galactoglucomannan oligosaccharides (GGMOs) in pea stem segments (Pisum sativum L. cv. Tyrkys) after 18 h of incubation results in changes of extracellular, intracellular and cell wall glycosidase activities (beta-D-glucosidase, beta-D-mannosidase, beta-D-galactosidase, beta-D-xylosidase, alpha-D-galactosidase, and alpha-L-arabinosidase). GGMOs lowered the glycosidase activities in the extracellular fraction, while in the cell wall fractions their activities were markedly increased. The intracellular enzyme alpha-d-galactosidase increased while the beta-d-galactosidase decreased in activity in response to the GGMO treatment. Extracellular enzymes showed low values of activities in comparison with intracellular and cell wall glycosidases. It is evident that GGMOs can alter auxin induced elongation and glycosidase activities in different compartments of the cell, however, the mode and site of their action remains unclear.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号