首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   166篇
  免费   2篇
  168篇
  2020年   1篇
  2018年   2篇
  2016年   1篇
  2015年   2篇
  2014年   4篇
  2013年   7篇
  2012年   5篇
  2011年   5篇
  2010年   3篇
  2009年   5篇
  2008年   5篇
  2007年   4篇
  2006年   3篇
  2005年   8篇
  2004年   6篇
  2003年   3篇
  2002年   10篇
  2001年   10篇
  2000年   6篇
  1999年   5篇
  1998年   5篇
  1997年   6篇
  1996年   7篇
  1995年   8篇
  1994年   8篇
  1993年   6篇
  1992年   8篇
  1991年   8篇
  1990年   6篇
  1989年   4篇
  1988年   1篇
  1986年   1篇
  1984年   1篇
  1980年   1篇
  1979年   1篇
  1978年   2篇
排序方式: 共有168条查询结果,搜索用时 15 毫秒
71.
《Journal of Physiology》2013,107(6):448-451
Schizophrenia affects about 1% of the world population and is a major socio-economical problem in ours societies. Cognitive symptoms are particularly resistant to current treatments and are believed to be closely related to an altered function of prefrontal cortex (PFC). Particularly, abnormalities in the plasticity processes in the PFC are a candidate mechanism underlying cognitive symptoms, and the recent evidences in patients are in line with this hypothesis. Animal pharmacological models of cognitive symptoms, notably with non-competitive NMDA receptor antagonists such as MK-801, are commonly used to investigate the underlying cellular and molecular mechanisms of schizophrenia. However, it is still unknown whether in these animal models, impairments in plasticity of PFC neurons are present. In this article, we briefly summarize the current knowledge on the effect of non-competitive NMDA receptor antagonist MK-801 on medial PFC (mPFC) neuronal activity and then introduce a form of plasticity found after acute exposure to MK-801, which was accompanied by cognitive deficits. These observations suggest a potential correlation between cognitive deficits and the aberrant plasticity in the mPFC in the animal model of schizophrenia.  相似文献   
72.
The presynaptic protein RIM1α mediates multiple forms of presynaptic plasticity at both excitatory and inhibitory synapses. Previous studies of mice lacking RIM1α (RIM1α(-/-) throughout the brain showed that deletion of RIM1α results in multiple behavioral abnormalities. In an effort to begin to delineate the brain regions in which RIM1 deletion mediates these abnormal behaviors, we used conditional (floxed) RIM1 knockout mice (fRIM1). By crossing these fRIM1 mice to previously characterized transgenic cre lines, we aimed to delete RIM1 selectively in the dentate gyrus (DG), using a specific preproopiomelanocortin promoter driving cre recombinase (POMC-cre) line , and in pyramidal neurons of the CA3 region of hippocampus, using the kainate receptor subunit 1 promoter driving cre recombinase (KA-cre). Neither of these cre driver lines was uniquely selective to the targeted regions. In spite of this, we were able to reproduce a subset of the global RIM1α(-/-) behavioral abnormalities, thereby narrowing the brain regions in which loss of RIM1 is sufficient to produce these behavioral differences. Most interestingly, hypersensitivity to the pyschotomimetic MK-801 was shown in mice lacking RIM1 selectively in the DG, arcuate nucleus of the hypothalamus and select cerebellar neurons, implicating novel brain regions and neuronal subtypes in this behavior.  相似文献   
73.
Methotrexate (MTX)-induced neurotoxicity may occur after intrathecal or systemic administration at low, intermediate and high doses for the treatment of malignant or inflammatory diseases. The mechanisms of MTX neurotoxicity are not totally understood, and appear to be multifactorial. In this study we characterized a model of MTX-induced seizures in mice to evaluate the convulsive and toxic MTX properties. Additionally, the effect of MTX-induced seizures on the activity of glutamate transporters, as well as the anticonvulsant role of MK-801, DNQX and adenosine on glutamate uptake in brain slices was investigated . MTX induced tonic-clonic seizures in approximately 95% of animals and pre-treatment with MK-801, DNQX and adenosine prevented seizure in 80%, 62% and 50% of animals, respectively. Moreover, MTX leads 59% of mice to death, which was prevented in 100% and 94% when animals received MK-801 and DNQX, respectively. Glutamate uptake decreased by 20% to 30% in cortical slices after MTX-induced seizures. Interestingly, when seizures were prevented by MK-801, DNQX or adenosine, glutamate uptake activity remained at the same level as the control group. Thus, our results demonstrate the involvement of the glutamatergic system in MTX-induced seizures.  相似文献   
74.
J M Ward  J Grinsted 《Gene》1978,3(2):87-95
Mutant plasmids in which large segments of R388 DNA are deleted were constructed in vitro from two R388::TnA (Tn801) plasmids, using the BamHI site of TnA and the BamHI and BglII sites of R388. These deletion mutants permitted mapping of genetic functions into the restriction map of R388.  相似文献   
75.
Book Review     
1-Aminocyclopropane carboxylic acid (ACPC) competitively inhibited (IC50, 38 +/- 7 nM) [3H]glycine binding to rat forebrain membranes but did not affect [3H]strychnine binding to rat brainstem/spinal cord membranes. Like glycine, ACPC enhanced 3H-labelled (+)-5-methyl-10,11-dihydro-5H-dibenzo[a,d]cyclohepten-5,10-imine maleate ([3H]MK-801) binding to N-methyl-D-aspartate receptor-coupled cation channels (EC50, 135 +/- 76 nM and 206 +/- 78 nM for ACPC and glycine, respectively) but was approximately 40% less efficacious in this regard. The maximum increase in [3H]MK-801 binding produced by a combination of ACPC and glycine was not different from that elicited by glycine, but both compounds potentiated glutamate-stimulated [3H]MK-801 binding. These findings indicate that ACPC is a potent and selective ligand at the glycine modulatory site associated with the N-methyl-D-aspartate receptor complex.  相似文献   
76.
Neurosteroids are endogenously derived compounds, mediating rapid effects in the central nervous system. They participate in vital processes, including memory and learning, neuroplasticity, and neuroprotection in Alzheimer’s disease. However, the mechanisms behind those effects remain to be elucidated. The neurosteroids pregnenolone sulphate (PS) and pregnanolone sulphate (3α5βS) have recently been shown to allosterically alter the NMDA receptor in nanomolar concentrations. Those studies featured ifenprodil, which is a dirty drug, with affinity to many targets. In this study we compare the NMDA receptors in the hippocampus to recombinant NMDA receptors, using [3H]-MK-801 as radioligand. The results show that neurosteroids modulate the ifenprodil binding kinetics in a narrow concentration interval, addressing it to the NR2B subunit, since no effects were recorded at recombinant NR1/NR2A receptors. The effects were also seen as changes in the manner ifenprodil displaced or induced the dissociation of [3H]-MK-801. It indicates that the neurosteroidal effects indeed alter the ion pore of the NMDA receptor, why it is reasonable to believe that these findings have physiological relevance.  相似文献   
77.
Using an experimental model of postoperation hyperalgesia (incision of the tissues on the foot) on 45 mongrel Wistar rats, we demonstrated that postoperation hyperalgesia (24 h after surgical intervention) is accompanied by a rise in the concentration of astroglial proteins (glial fibrillary acidic protein, GFAP, and S-100 protein) in the medulla oblongata and thalamus/hypothalamus. An agonist of NMDA receptors, glutamate (1 mg/kg), injected 5 min prior to the surgical procedure caused a greater increase in the concentration of astroglial proteins, whereas a noncompetitive antagonist of the above receptors, MK-801 (0.5 mg/kg), injected according to the same protocol to a great extent prevented postoperation hyperalgesia-related changes in the level of astroglial proteins in the thalamus/hypothalamus and medulla oblongata. Our findings show that astroglia actively influences glutamate-mediated neurotransmission, which plays a leading role in the development of postoperation hyperalgesia.  相似文献   
78.
The possible involvement of N-methyl-D-aspartate (NMDA) receptors in the nucleus accumbens (NAc) in nicotine's effect on impairment of memory by morphine was investigated. A passive avoidance task was used for memory assessment in male Wistar rats. Subcutaneous (s.c.) administration of morphine (5 and 10 mg/kg) after training impaired memory performance in the animals when tested 24 h later. Pretest administration of the same doses of morphine reversed impairment of memory because of post-training administration of the opioid. Moreover, administration of nicotine (0.2 and 0.4 mg/kg, s.c.) before the test prevented impairment of memory by morphine (5 mg/kg) given after training. Impairment of memory performance in the animals because of post-training administration of morphine (5 mg/kg) was also prevented by pretest administration of a noncompetitive NMDA receptor antagonist, MK-801 (0.75 and 1 microg/rat). Interestingly, an ineffective dose of MK-801 (0.5 microg/rat) in combination with low doses (0.075 and 0.1 mg/kg) of nicotine, which had no effects alone, synergistically improved memory performance impaired by morphine given after training. On the other hand, pretest administration of NMDA (0.1 and 0.5 microg/rat), which had no effect alone, in combination with an effective dose (0.4 mg/kg, s.c.) of nicotine prevented the improving effect of nicotine on memory impaired by pretreatment morphine. The results suggest a possible role for NMDA receptors of the NAc in the improving effect of nicotine on the morphine-induced amnesia.  相似文献   
79.
In recent years, serum S100B has been used as a secondary endpoint in some clinical trials, in which serum S100B has successfully indicated the benefits or harm done by the tested agents. Compared to clinical stroke studies, few experimental stroke studies report using serum S100B as a surrogate marker for estimating the long-term effects of neuroprotectants. This study sought to observe serum S100B kinetics in PIT stroke models and to clarify the association between serum S100B and both final infarct volumes and long-term neurological outcomes. Furthermore, to demonstrate that early elevations in serum S100B reflect successful neuroprotective treatment, a pharmacological study was performed with a non-competitive NMDA glutamate receptor antagonist, MK-801. Serum S100B levels were significantly elevated after PIT stroke, reaching peak values 48 h after the onset and declining thereafter. Single measurements of serum S100B as early as 48 h after PIT stroke correlated significantly with final infarct volumes and long-term neurological outcomes. Elevated serum S100B was significantly attenuated by MK-801, correlating significantly with long-term beneficial effects of MK-801 on infarct volumes and neurological outcomes. Our results showed that single measurements of serum S100B 48 h after PIT stroke would serve as an early and simple surrogate marker for long-term evaluation of histological and neurological outcomes in PIT stroke rat models.  相似文献   
80.
Environmental factors have been implicated in the pathogenesis of neurodegenerative diseases. Maneb (MB) and mancozeb (MZ) have been extensively used as pesticides. Exposure to MB lowers the threshold for dopaminergic damage triggered by 1‐methyl‐4‐phenyl‐1,2,3,6‐tetrahydropyridine. MB and MZ potentiate 1‐methyl‐4‐phenylpyridium (MPP+)‐induced cytotoxicity in rat pheochromocytoma (PC12) cells partially via nuclear factor kappa B (NF‐κB) activation. RTP801 dramatically increased by oxidative stresses and DNA damage is the possible mechanism of neurotoxins‐induced cell death in many studies. This study demonstrated that MB and MZ induced DNA damage as seen in comet assay. The expressions of RTP801 protein and mRNA were elevated after MB and MZ exposures. By knocking down RTP801 using shRNA, we demonstrated that NF‐κB activation by MB and MZ was regulated by RTP801 and cell death triggered by MB and MZ was associated with RTP801 elevation. This revealed that the toxic mechanisms of dithiocarbamates are via the cross talk between RTP801 and NF‐κB.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号