首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   166篇
  免费   2篇
  168篇
  2020年   1篇
  2018年   2篇
  2016年   1篇
  2015年   2篇
  2014年   4篇
  2013年   7篇
  2012年   5篇
  2011年   5篇
  2010年   3篇
  2009年   5篇
  2008年   5篇
  2007年   4篇
  2006年   3篇
  2005年   8篇
  2004年   6篇
  2003年   3篇
  2002年   10篇
  2001年   10篇
  2000年   6篇
  1999年   5篇
  1998年   5篇
  1997年   6篇
  1996年   7篇
  1995年   8篇
  1994年   8篇
  1993年   6篇
  1992年   8篇
  1991年   8篇
  1990年   6篇
  1989年   4篇
  1988年   1篇
  1986年   1篇
  1984年   1篇
  1980年   1篇
  1979年   1篇
  1978年   2篇
排序方式: 共有168条查询结果,搜索用时 0 毫秒
11.
Lactobacillus acidophilus IBB 801 produces a small bacteriocin, designated acidophilin 801. Studying the relationship between growth and bacteriocin biosynthesis revealed primary metabolite kinetics of bacteriocin production with a peak activity at the end of the exponential growth phase followed by a decrease during the stationary phase. Both microbial growth and bacteriocin production was inhibited by lactic acid. Whereas volumetric bacteriocin production (activity units (AU) ml(-1)) was favoured under pH-controlled conditions, bacteriocin titres rapidly decreased because of strong adsorption of the bacteriocin molecules to the producing cells under less acidic conditions.  相似文献   
12.
In cynomologus monkeys, systemic administration of MK-801, a noncompetitive antagonist for the N-methyl-D-aspartate receptor, prevented the development of the parkinsonian syndrome induced by the neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). MK-801 also attenuated dopamine depletion in the caudate and putamen and protected dopaminergic neurons in the substantia nigra from the degeneration induced by the neurotoxin. Nevertheless, 7 days after MPTP administration in the caudate and putamen of monkeys also receiving MK-801, the levels of toxic 1-methyl-4-phenylpyridinium were even higher than those measured in monkeys receiving MPTP alone. This indicates that the protective action of MK-801 is not related to MPTP metabolism and strongly suggests that, in primates, the excitatory amino acids could play a crucial role in the mechanism of the selective neuronal death induced by MPTP.  相似文献   
13.
Mathé  A. A.  Gruber  S.  Jiménez  P. A.  Theodorsson  E.  Stenfors  C. 《Neurochemical research》1997,22(5):629-636
Rats were pretreated with 0.9% NaCl, or 0.1 or 1.0 mg/kg MK-801, an anticonvulsant and a psychotomimetic drug, and 60 minutes later given ECS or sham ECS. After six sessions the animals were sacrificed and neuropeptide Y (NPY-), neurokinin A (NKA-), and calcitonin gene-related peptide (CGRP-) like immunoreactivity (-LI) measured with radioimmunoassays. ECS increased NPY-LI in frontal cortex, striatum, occipital cortex and hippocampus, and NKA-LI in occipital cortex and hippocampus. MK-801 increased CGRP in a dose-response manner in frontal cortex, and NKA-LI in occipital cortex. Although the higher MK-801 dose reduced seizure duration by 50%, the ECS induced NPY-LI increase in striatum, occipital cortex and hippocampus, and NKA-LI in occipital cortex was not diminished. In contrast, there was a parallel decrease in seizures and NPY-LI and NKA-LI changes in frontal cortex and hippocampus, respectively. Investigation of neuropeptides in brain may contribute to understanding of the mechanisms of action of antide-pressive and antipsychotic treatments and of psychotomimetic drugs.  相似文献   
14.
Specific [3H]MK801 binding to rat brain NMDA receptors after the administration of the convulsant drug 3-mercaptopropionic acid (MP) and the adenosine analogue cyclopentyladenosine (CPA) was studied by means of a quantitative autoradiographic method. MP administration (150 mg/kg, i.p.) caused significant decreases in [3H]MK801 binding in several hippocampus subareas and layers, mainly in CA1 and CA3 at seizure (11–27%) and postseizure (8–16%) and in cerebral occipital cortex at seizure (18–22%). In nucleus accumbens, a rise was observed at postseizure (44%) and a tendency to increase at seizure (24%). CPA (2mg/kg, i.p.) decreased ligand binding in hippocampus (CA1, CA2, CA3) (17–22%) and in occipital cerebral cortex (18–24%). When CPA was administered 30 minutes before MP (which delayed seizure onset) and rats were sacrified at seizure, decreases in [3H]MK801 binding in several layers of CA1 and CA3 of hippocampus (11–27%) and in CA1, CA2, CA3 (24–35%) after CPA+MP postseizure, and an increase in CA2 after CPA and CPA+MP postseizure (20–34%), were observed. A drop was found in the occipital subarea (18–24%) after CPA and in the frontal and occipital subarea after CPA+MP postseizure (24–34%) while no changes were observed in any treatment involving the other cerebral cortex regions, thalamic nuclei, caudate putamen and olfactory tubercle. These results show that [3H]MK801 binding changes according to drug treatment and the area being studied, thus indicating a different role in seizure activity.  相似文献   
15.
The effects of continuous infusion of NMDA receptor antagonist MK-801 on the modulation of NMDA receptor subunits NR1, NR2A, NR2B, and NR2C were investigated by using in situ hybridization study. Differential assembly of NMDA receptor subunits determines their functional characteristics. Continuous intracerebroventricular (i.c.v.) infusion with MK-801 (1 pmol/10 l/h) for 7 days resulted in significant modulations in the NR1, NR2A, and NR2B mRNA levels without producing stereotypic motor syndromes. The levels of NR1 mRNA were significantly increased (9-20%) in the cerebral cortex, striatum, septum, and CA1 of hippocampus in MK-801-infused rats. The levels of NR2A mRNA were significantly decreased (11-16%) in the CA3 and dentate gyrus of hippocampus in MK-801-infused rats. In contrast to NR2A, NR2B subunit mRNA levels were increased (10-14%) in the cerebral cortex, caudate putamen, and thalamus. However, no changes of NR2C subunits in cerebellar granule layer were observed. Using quantitative ligand autoradiography, the binding of NMDA receptor ligand [3H]MK-801 was increased (12-25%) significantly in almost all brain regions except in the thalamus and cerebellum after 7 days infusion with MK-801. These results suggest that region-specific changes of NMDA receptor subunit mRNA and [3H]MK-801 binding are involved in the MK-801-infused adult rats.  相似文献   
16.
Ibogaine, a putative antiaddictive drug, is remarkable in its apparent ability to downgrade withdrawal symptoms and drug craving for extended periods of time after a single dose. Ibogaine acts as a non-competitive NMDA receptor antagonist, while NMDA has been implicated in long lasting changes in neuronal function and in the physiological basis of drug addiction. The purpose of this study was to verify if persistent changes in NMDA receptors could be shown in vivo and in vitro after a single administration of ibogaine. The time course of ibogaine effects were examined on NMDA-induced seizures and [3H] MK-801 binding to cortical membranes in mice 30min, 24, 48, and 72h post treatment. Ibogaine (80 mg/kg, ip) was effective in inhibiting convulsions induced by NMDA at 24 and 72 hours post administration. Likewise, [3H] MK-801 binding was significantly decreased at 24 and 72 h post ibogaine. No significant differences from controls were found at 30min or 48h post ibogaine. This long lasting and complex pattern of modulation of NMDA receptors prompted by a single dose of ibogaine may be associated to its antiaddictive properties.  相似文献   
17.
Disrupted-in-schizophrenia 1 (DISC1) is a multifunctional scaffold protein which plays an important role in neurogenesis and neural development in the adult brain, especially in the dentate gyrus (DG) of the hippocampus. Accumulated research has unveiled the role of DISC1 in several aspects of neural development and neurogenesis, such as neuronal maturation, proliferation, migration, positioning, differentiation, dendritic growth, axonal outgrowth, and synaptic plasticity. Studies on the function of this protein have explored multiple facets, including variants and missense mutants in genetics, proteins interactivity and signaling pathways in molecular biology, and pathogenesis and treatment targets of major mental illness, and more. In this review, we present several signaling pathways discussed in recent research, such as the AKT signaling pathway, GABA signaling pathway, GSK3β signaling pathway, Wnt signaling pathway, and NMDA-R signaling pathway. DISC1 interacts, directly or indirectly, with these signaling pathways and they co-regulate the process of adult neurogenesis in the hippocampus.  相似文献   
18.
The static fluid mosaic model of biological membranes has been progressively complemented by a dynamic membrane model that includes phospholipid reordering in domains that are proposed to extend from nanometers to microns. Kinetic models for lipolytic enzymes have only been developed for homogeneous lipid phases. In this work, we develop a generalization of the well-known surface dilution kinetic theory to cases where, in a same lipid phase, both domain and nondomain phases coexist. Our model also allows understanding the changes in enzymatic activity due to a decrease of free substrate concentration when domains are induced by peptides. This lipid reordering and domain dynamics can affect the activity of lipolytic enzymes, and can provide a simple explanation for how basic peptides, with a strong direct interaction with acidic phospholipids (such as beta-amyloid peptide), may cause a complex modulation of the activities of many important enzymes in lipid signaling pathways.  相似文献   
19.
Coexpression in human embryonic kidney (HEK) 293 cells of the postsynaptic density-95 protein (PSD-95) with NMDA receptor NR2A or NR2B single subunits or NR1-1a/NR2A and NR1-1a/NR2B subunit combinations induced an approximately threefold increase in NR2A and NR2B subunit expression. Deletion of the NR2 C-terminal ESDV motifs resulted in the loss of this increase following coexpression of NR1-1a/NR2A(Trunc) and NR1-1a/NR2B(Trunc) with PSD-95. Characterisation of the radioligand binding properties of [(3)H]MK-801 to NR1-1a/NR2A receptors with or without PSD-95 showed that PSD-95 induced a threefold increase in B:(max) values and an apparent approximately fivefold decrease in affinity in the presence of 10 microM: L-glutamate. In the presence of 1 mM: L-glutamate, the K:(i) for MK-801 binding to NR1-1a/NR2A with PSD-95 was not significantly different from that for NR1-1a/NR2A without PSD-95. The EC(50) value for the enhancement of [(3)H]MK-801 binding by L-glutamate to NR1-1a/NR2A was 1.8 +/- 0.4 (n = 4) and 8.9 (mean of n = 2) microM: in the absence and presence of PSD-95, respectively. Thus, coexpression of PSD-95 with NR1-1a/NR2A results in a decreased sensitivity to L-glutamate and an enhanced expression of NR2A and NR2B subunits. Deletion studies show that this effect is mediated via interaction of the C-terminal ESDV motif of the NR2 subunit with PSD-95.  相似文献   
20.
There is accumulating evidence that excitotoxicity and oxidative stress resulting from excessive activation of glutamate (N-methyl-d-aspartate) NMDA receptors are major participants in striatal degeneration associated with 3-nitropropionic acid (3NP) administration. Although excitotoxic and oxidative mechanisms are implicated in 3NP toxicity, there are conflicting reports as to whether NMDA receptor antagonists attenuate or exacerbate the 3NP-induced neurodegeneration. In the present study, we investigated the involvement of NMDA receptors in striatal degeneration, protein oxidation and motor impairment following systemic 3NP administration. We examined whether NMDA receptor antagonists, memantine and ifenprodil, influence the neurotoxicity of 3NP. The development of striatal lesion and protein oxidation following 3NP administration is delayed by memantine but not affected by ifenprodil. However, in behavioral experiments, memantine failed to improve and ifenprodil exacerbated the motor deficits associated with 3NP toxicity. Together, these findings suggest caution in the application of NMDA receptor antagonists as a neuroprotective agent in neurodegenerative disorders associated with metabolic impairment.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号