首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1682篇
  免费   76篇
  国内免费   76篇
  1834篇
  2024年   10篇
  2023年   81篇
  2022年   59篇
  2021年   93篇
  2020年   77篇
  2019年   93篇
  2018年   73篇
  2017年   46篇
  2016年   59篇
  2015年   54篇
  2014年   81篇
  2013年   170篇
  2012年   50篇
  2011年   73篇
  2010年   46篇
  2009年   67篇
  2008年   68篇
  2007年   69篇
  2006年   64篇
  2005年   57篇
  2004年   57篇
  2003年   46篇
  2002年   46篇
  2001年   22篇
  2000年   26篇
  1999年   24篇
  1998年   19篇
  1997年   26篇
  1996年   14篇
  1995年   20篇
  1994年   11篇
  1993年   17篇
  1992年   20篇
  1991年   9篇
  1990年   5篇
  1989年   14篇
  1988年   3篇
  1987年   4篇
  1986年   14篇
  1985年   7篇
  1984年   11篇
  1983年   5篇
  1982年   4篇
  1981年   5篇
  1980年   4篇
  1979年   3篇
  1977年   1篇
  1976年   3篇
  1974年   2篇
  1972年   1篇
排序方式: 共有1834条查询结果,搜索用时 15 毫秒
1.
2.
The pharmacokinetics of the enantiomers of the non-steroidal anti-inflammatory drug pirprofen were studied in male Sprague-Dawley rats after oral and intravenous (iv) doses of the racemate. No significant differences were detected between the enantiomers after oral or iv dosing in t½, Vd, or ∑Xu. However, the R:S area under the plasma concentration (AUC) ratio after oral doses (0.92 ± 0.13) was slightly but significantly lower than after matching iv doses (1.05 ± 0.036). The absolute bioavailability of the active S-enantiomer (78.5%) after oral doses was higher than the inactive R-enantiomer (69.3%). The plasma protein binding of both enantiomers was saturable over a fivefold range of plasma concentrations. At higher plasma concentrations, the S-enantiomer was less bound than the R-enantiomer. In an in vitro experiment using everted rat jejunum, no chiral inversion was discernible. The dependency of the AUC ratio of the enantiomers on the route of administration may be due to stereoselective first-pass metabolism. © 1993 Wiley-Liss, Inc.  相似文献   
3.
Abstract Cationic amphiphilic drugs (CADs) of varied clinical use were screened to determine their capacity to alter the pattern of labeling with 32Pj of cerebral cortex mince phospholipids. The altered phospholipid labeling patterns were qualitatively similar, the prominent features being reduced incorporation into phosphatidylcholine and increased incorporation into phosphatidic acid. Relative potencies were: (±)-propranolol > chlorpromazine = 4,4'-bis(diethylaminoethoxy) α,β -diethyldiphenylethane > desipramine > di-bucaine > pimozide > oxymetazoline = fenfluramine = haloperidol = chloroquine > amphetamine = no drug added. Propranolol was used to study the action of CADs further. Its effect was time- and dose-dependent, but in contrast with pineal gland, no label appeared in phosphatidyl-CMP (CDP-diacylglycerol), nor did dialysis of the mince to reduce diffusible substrates or exogenous addition of substrates cause appearance of liponucleotide. Thus lack of diffusible precursors is not responsible for CAD effects in vitro. Pulse-chase experiments with 32P1 and [2-3H]glycerol suggested that inhibition of phosphatidate phosphohydrolase may be partly responsible for the observed alterations in phospholipid labeling in the presence of CADs.  相似文献   
4.
SMCT1 is a Na+-coupled monocarboxylate transporter expressed in a variety of tissues including kidney, thyroid, small intestine, colon, brain, and retina. We found recently that several non-steroidal anti-inflammatory drugs (NSAIDs) inhibit the activity of SMCT1. Here we evaluated the effect of diclofenac, also a NSAID, on SMCT1. SMCT1 cDNA was expressed heterologously in the human retinal pigment epithelial cell lines HRPE and ARPE-19, the human mammary epithelial cell line MCF7, and in Xenopus laevis oocytes. Transport was monitored by substrate uptake and substrate-induced currents. Na+-dependent uptake/current was considered as SMCT1 activity. The effect of diclofenac was evaluated for specificity, dose-response, and influence on transport kinetics. To study the specificity of the diclofenac effect, we evaluated the influence of this NSAID on the activity of several other cloned transporters in mammalian cells under identical conditions. In contrast to several NSAIDs that inhibited SMCT1, diclofenac stimulated SMCT1 when expressed in HRPE and ARPE-19 cells. The stimulation was marked, ranging from 2- to 5-fold depending on the concentration of diclofenac. The stimulation was associated with an increase in the maximal velocity of the transport system as well as with an increase in substrate affinity. The observed effect on SMCT1 was selective because the activity of several other cloned transporters, when expressed in HRPE cells and studied under identical conditions, was not affected by diclofenac. Interestingly, the stimulatory effect on SMCT1 observed in HRPE and ARPE-19 cells was not evident in MCF7 cells nor in the X. laevis expression system, indicating that SMCT1 was not the direct target for diclofenac. The RPE-specific effect suggests that the target of diclofenac that mediates the stimulatory effect is expressed in RPE cells but not in MCF7 cells or in X. laevis oocytes. Since SMCT1 is a concentrative transporter for metabolically important compounds such as pyruvate, lactate, β-hydroxybutyrate, and nicotinate, the stimulation of its activity by diclofenac in RPE cells has biological and clinical significance.  相似文献   
5.
Survivin as a target for new anticancer interventions   总被引:66,自引:0,他引:66  
Survivin is a member of the inhibitor of apoptosis protein (IAP) family, that has been implicated in both control of cell division and inhibition of apoptosis. Specifically, its anti-apoptotic function seems to be related to the ability to directly or indirectly inhibit caspases. Survivin is selectively expressed in the most common human neoplasms and appears to be involved in tumor cell resistance to some anticancer agents and ionizing radiation. On the basis of these findings survivin has been proposed as an attractive target for new anticancer interventions. Several preclinical studies have demonstrated that down-regulation of survivin expression/function, accomplished through the use of antisense oligonucleotides, dominant negative mutants, ribozymes, small interfering RNAs and cyclin-dependent kinase inhibitors, increased the apoptotic rate, reduced tumor-growth potential and sensitized tumor cells to chemotherapeutic drugs with different action mechanisms and gamma-irradiation in in vitro and in vivo models of different human tumor types.  相似文献   
6.
Heat shock proteins act as molecular chaperones, facilitating protein folding in cells of living organisms. Their role is particularly important in parasites because environmental changes associated with their life cycles place a strain on protein homoeostasis. Not surprisingly, some heat shock proteins are essential for the survival of the most virulent malaria parasite, Plasmodium falciparum . This justifies the need for a greater understanding of the specific roles and regulation of malarial heat shock proteins. Furthermore, heat shock proteins play a major role during invasion of the host by the parasite and mediate in malaria pathogenesis. The identification and development of inhibitor compounds of heat shock proteins has recently attracted attention. This is important, given the fact that traditional antimalarial drugs are increasingly failing, as a consequence of parasite increasing drug resistance. Heat shock protein 90 (Hsp90), Hsp70/Hsp40 partnerships and small heat shock proteins are major malaria drug targets. This review examines the structural and functional features of these proteins that render them ideal drug targets and the challenges of targeting these proteins towards malaria drug design. The major antimalarial compounds that have been used to inhibit heat shock proteins include the antibiotic, geldanamycin, deoxyspergualin and pyrimidinones. The proposed mechanisms of action of these molecules and the pathways they inhibit are discussed.  相似文献   
7.
A new series of 3-phenyl-N-[3-(4-phenylpiperazin-1yl)propyl]-1H-pyrazole-5-carboxamide derivatives were synthesized and investigated their anti-inflammatory activities using carrageenan-induced rat paw edema model in vivo. All the synthesized compounds were found to be potent anti-inflammatory agents.  相似文献   
8.
The renaissance of peptides in pharmaceutical industry results from their importance in many biological functions. However, low metabolic stability and the lack of oral availability of most peptides is a certain limitation. Whereas metabolic instability may be often overcome by development of small cyclic peptides containing d-amino acids, the very low oral availability of most peptides is a serious limitation for some medicinal applications. The situation is complicated because a twofold optimization – biological activity and oral availability – is required to overcome this problem. Moreover, most simple “rules” for achieving oral availability are not general and are applicable only to limited cases. Many structural modifications for increasing biological activities and metabolic stabilities of cyclic peptides have been described, of which N-alkylation is probably the most common. This mini-review focuses on the effects of N-methylation of cyclic peptides in strategies to optimize bioavailabilities.  相似文献   
9.
The 37-43 amino acid Abeta peptide is the principal component of beta-amyloid deposits in Alzheimer's disease (AD) brain, and is derived by serial proteolysis of the amyloid precursor protein (APP) by beta- and gamma-secretase. gamma-Secretase also cleaves APP at Val50 in the Abeta numbering (epsilon cleavage), resulting in the release of a fragment called APP intracellular domain (AICD). The aim of this study was to determine whether amino acid substitutions in the APP transmembrane domain differentially affect Abeta and AICD generation. We found that the APPV715F substitution, which has been previously shown to dramatically decrease Abeta40 and Abeta42 while increasing Abeta38 levels, does not affect in vitro generation of AICD. Furthermore, we found that the APPL720P substitution, which has been previously shown to prevent in vitro generation of AICD, completely prevents Abeta generation. Using a fluorescence resonance energy transfer (FRET) method, we next found that both the APPV715F and APPL720P substitutions significantly increase the distance between the N- and C-terminus of presenilin 1 (PS1), which has been proposed to contain the catalytic site of gamma-secretase. In conclusion, both APPV715F and APPL720P change PS1 conformation with differential effects on Abeta and AICD production.  相似文献   
10.
Lu XL  Xu QZ  Liu XY  Cao X  Ni KY  Jiao BH 《化学与生物多样性》2008,5(9):1669-1674
The increasing demands for new lead compounds in pharmaceutical and agrochemical industries have driven scientists to search for new bioactive natural products. Marine microorganisms are rich sources of novel, bioactive secondary metabolites, and have attracted much attention of chemists, pharmacologists, and molecular biologists. This mini-review mainly focuses on macrolactins, a group of 24-membered lactone marine natural products, aiming at giving an overview on their sources, structures, biological activities, as well as their potential medical applications.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号