首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   19篇
  免费   2篇
  国内免费   2篇
  23篇
  2017年   2篇
  2015年   1篇
  2013年   1篇
  2012年   4篇
  2011年   2篇
  2010年   2篇
  2009年   3篇
  2006年   1篇
  2004年   1篇
  2003年   1篇
  2002年   1篇
  2000年   1篇
  1999年   1篇
  1998年   1篇
  1995年   1篇
排序方式: 共有23条查询结果,搜索用时 11 毫秒
1.
2.
Since the xylosidase of Bacillus pumilus hydrolyzed 1-naphthyl-β-d-xylopyranoside (naphthyl-X) to produce xylose and 1-naphthol and a chromogenic azo compound is produced by coupling 1-naphthol and Fast Blue Salt B, a simple method for detection of xylosidase activity in single colonies was studied. Escherichia coli JM109 carrying the xylosidase gene of B. pumilus was cultivated at 37°C for 18 h on an LB plate containing 0.5 mg/ml naphthyl-X, and then the plate was overlaid with 3 ml of a top layer containing 24 mg of agar and 6 mg of Fast Blue Salt B. After incubation of the plate at 37°C for 1 h, each colony became reddish-brown. Even a small colony with the xylosidase on the plate was easily distinguished from colonies without the enzyme.  相似文献   
3.
Aims: To characterize a β‐xylosidase from the thermophilic fungus Thermomyces lanuginosus and to investigate its potential in saccharification of hemicellulosic xylans. Methods and Results: A gene (designated TlXyl43) encoding β‐xylosidase was cloned from T. lanuginosus CAU44 and expressed in Escherichia coli. The gene consists of a 1017‐bp open reading frame without introns. It encodes a mature protein of 338 residues with no predicted signal peptide, belonging to glycoside hydrolase (GH) family 43. Over 60% of the recombinant β‐xylosidase (TlXyl43) was secreted into the culture medium. TlXyl43 was purified 2·6‐fold to homogeneity with an estimated mass of 51·6 kDa by SDS‐PAGE. The purified enzyme exhibited optimal activity at pH 6·5 and 55°C and was stable at 50°C. It was competitively inhibited by xylose with a Ki value of 63 mmol l?1. Conclusions: In this study, a GH family 43 β‐xylosidase gene (TlXyl43) from T. lanuginosus CAU44 was cloned and functionally expressed in E. coli, and over 60% of recombinant protein was secreted into the culture. Significance and Impact of the Study: This is the first report of the cloning and functional expression of a β‐xylosidase gene from Thermomyces species. TlXyl43 holds great potential for variety of industries.  相似文献   
4.
Aims: To characterize the duel activities of a glycosyl hydrolase family 3 β‐glucosidase/xylosidase from rumen bacterial metagenome and to investigate the capabilities of its β‐d ‐xylosidase activities for saccharification of hemicellulosic xylans. Methods and Results: A β‐glucosidase/xylosidase gene RuBGX1 was cloned from yak (Bos grunniens) rumen using the metagenomic technology. Recombinant RuBGX1, expressed in Escherichia coli, demonstrated high hydrolytic activities on both p‐nitrophenyl‐β‐d ‐glucopyranoside (pNP‐Glc) and p‐nitrophenyl‐β‐d ‐xylopyranoside (pNP‐Xyl) substrates. Analysis of the kinetic properties indicated that RuBGX1 had a lower affinity for pNP‐Glc substrate as the Km was 0·164 mmol l?1 for pNP‐Glc and 0·03 mmol l?1 for pNP‐Xyl at pH 6·0 and 50°C, respectively. The capabilities of RuBGX1 β‐xylosidase for hydrolysis of xylooligosaccharide substrates were further investigated using an endoxylanase‐coupled assay. Hydrolysis time courses illustrated that a significant increase (about 50%) in the reducing sugars, including xylobiose, xylotriose and xylotetraose, was achieved by supplementing endoxylanase with RuBGX1. Enzymatic product analysis using high‐performance anion‐exchange chromatography‐pulsed amperometric detection showed that RuBGX1 could release xyloses from intermediate xylooligosaccharides produced by endoxylanase. Conclusions: The RuBGX1 shows β‐glucosidase activity in hydrolysis of cello‐oligosaccharides; meanwhile, it has β‐xylosidase activity and functions synergistically with endoxylanase to promote the degradation of hemicellulosic xylans. Significance and Impact of the study: This was the first to report the β‐xylosidase activity of family 3 β‐glucosidase/xylosidase functioned in the degradation of hemicellulosic xylans. The bifunctional β‐glucosidase/xylosidase property of RuBGX1 can be used in simultaneous saccharification of cellulose and xylan into fermentable glucose and xylose.  相似文献   
5.
Enzymatic deconstruction of xylan for biofuel production   总被引:1,自引:0,他引:1  
The combustion of fossil-derived fuels has a significant impact on atmospheric carbon dioxide (CO2) levels and correspondingly is an important contributor to anthropogenic global climate change. Plants have evolved photosynthetic mechanisms in which solar energy is used to fix CO2 into carbohydrates. Thus, combustion of biofuels, derived from plant biomass, can be considered a potentially carbon neutral process. One of the major limitations for efficient conversion of plant biomass to biofuels is the recalcitrant nature of the plant cell wall, which is composed mostly of lignocellulosic materials (lignin, cellulose, and hemicellulose). The heteropolymer xylan represents the most abundant hemicellulosic polysaccharide and is composed primarily of xylose, arabinose, and glucuronic acid. Microbes have evolved a plethora of enzymatic strategies for hydrolyzing xylan into its constituent sugars for subsequent fermentation to biofuels. Therefore, microorganisms are considered an important source of biocatalysts in the emerging biofuel industry. To produce an optimized enzymatic cocktail for xylan deconstruction, it will be valuable to gain insight at the molecular level of the chemical linkages and the mechanisms by which these enzymes recognize their substrates and catalyze their reactions. Recent advances in genomics, proteomics, and structural biology have revolutionized our understanding of the microbial xylanolytic enzymes. This review focuses on current understanding of the molecular basis for substrate specificity and catalysis by enzymes involved in xylan deconstruction.  相似文献   
6.
1,4-beta-D-Xylan is the major component of plant cell-wall hemicelluloses. beta-D-Xylosidases are involved in the breakdown of xylans into xylose and belong to families 3, 39, 43, 52, and 54 of glycoside hydrolases. Here, we report the first crystal structure of a member of family 39 glycoside hydrolase, i.e. beta-D-xylosidase from Thermoanaerobacterium saccharolyticum strain B6A-RI. This study also represents the first structure of any beta-xylosidase of the above five glycoside hydrolase families. Each monomer of T. saccharolyticum beta-xylosidase comprises three distinct domains; a catalytic domain of the canonical (beta/alpha)(8)-barrel fold, a beta-sandwich domain, and a small alpha-helical domain. We have determined the structure in two forms: D-xylose-bound enzyme and a covalent 2-deoxy-2-fluoro-alpha-D-xylosyl-enzyme intermediate complex, thus providing two snapshots in the reaction pathway. This study provides structural evidence for the proposed double displacement mechanism that involves a covalent intermediate. Furthermore, it reveals possible functional roles for His228 as the auxiliary acid/base and Glu323 as a key residue in substrate recognition.  相似文献   
7.
Aims: The purification and biochemical properties of the 1,4‐β‐xylosidase of an oenological yeast were investigated. Methods and Results: An ethanol‐tolerant 1,4‐β‐xylosidase was purified from cultures of a strain of Pichia membranifaciens grown on xylan at 28°C. The enzyme was purified by sequential chromatography on DEAE cellulose and Sephadex G‐100. The relative molecular mass of the enzyme was determined to be 50 kDa by SDS‐PAGE. The activity of 1,4‐β‐xylosidase was optimum at pH 6·0 and at 35°C. The activity had a Km of 0·48 ± 0·06 mmol l?1 and a Vmax of 7·4 ± 0·1 μmol min?1 mg?1 protein for p‐nitrophenyl‐β‐d ‐xylopyranoside. Conclusions: The enzyme characteristics (pH and thermal stability, low inhibition rate by glucose and ethanol tolerance) make this enzyme a good candidate to be used in enzymatic production of xylose and improvement of hemicellulose saccharification for production of bioethanol. Significance and Impact of the Study: This study may be useful for assessing the ability of the 1,4‐β‐xylosidase from P. membranifaciens to be used in the bioethanol production process.  相似文献   
8.
Aims: To study glycosidase activities of a Lactobacillus brevis strain and to isolate an intracellular β‐glucosidase from this strain. Methods and Results: Lactic acid bacteria (LAB) isolated from a commercially available starter culture preparation for malolactic fermentation were tested for β‐glycosidase activities. A strain of Lact. brevis showing high intracellular β‐d ‐glucosidase, β‐d ‐xylosidase and α‐l ‐arabinosidase activities was selected for purification and characterization of its β‐glucosidase. The pure glucosidase from Lact. brevis has also side activities of xylosidase, arabinosidase and cellobiosidase. It is a homotetramer of 330 kDa and has an isoelectric point at pH 3·5. The Km for p‐nitrophenyl‐β‐d ‐glucopyranoside and p‐nitrophenyl‐β‐d ‐xylopyranoside is 0·22 and 1·14 mmol l?1, respectively. The β‐glucosidase activity was strongly inhibited by gluconic acid δ‐lactone, partially by glucose and gluconate, but not by fructose. Ethanol and methanol were found to increase the activity up to twofold. The free enzyme was stable at pH 7·0 (t1/2 = 50 day) but not at pH 4·0 (t1/2 = 4 days). Conclusions: The β‐glucosidase from Lact. brevis is widely different to that characterized from Lactobacillus casei ( Coulon et al. 1998 ) and Lactobacillus plantarum ( Sestelo et al. 2004 ). The high tolerance to fructose and ethanol, the low inhibitory effect of glucose on the enzyme activity and the good long‐term stability could be of great interest for the release of aroma compounds during winemaking. Significance and Impact of the study: Although the release of aroma compounds by LAB has been demonstrated by several authors, little information exists on the responsible enzymes. This study contains the first characterization of an intracellular β‐glucosidase isolated from a wine‐related strain of Lact. brevis.  相似文献   
9.
10.
Mutagenesis studies were carried out to examine the effects of replacement of either the nucleophile Glu-236 or the acid/base Glu-128 residue of the F/10 xylanase by a His residue. To our surprise, the affinity for the p-nitrophenyl-β- -xylobioside substrate was increased by 103-fold in the case of the mutant E128H enzyme compared with that of the wild-type F/10 xylanase. The catalytic activity of the mutant enzymes was low, despite the fact that the distance between the nucleophilic atom (an oxygen in the native xylanase and a nitrogen in the mutant) and the α-carbon was barely changed. Thus, the alteration of the acid/base functionality (Glu-128 to His mutation) provided a significantly favorable interaction within the E128H enzyme/substrate complex in the ground state, accompanying a reduction in the stabilization effect in the transition state.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号