首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   876篇
  免费   97篇
  国内免费   27篇
  1000篇
  2024年   2篇
  2023年   13篇
  2022年   15篇
  2021年   28篇
  2020年   25篇
  2019年   18篇
  2018年   27篇
  2017年   18篇
  2016年   27篇
  2015年   29篇
  2014年   18篇
  2013年   37篇
  2012年   21篇
  2011年   28篇
  2010年   14篇
  2009年   42篇
  2008年   38篇
  2007年   42篇
  2006年   45篇
  2005年   35篇
  2004年   21篇
  2003年   41篇
  2002年   28篇
  2001年   19篇
  2000年   39篇
  1999年   34篇
  1998年   28篇
  1997年   25篇
  1996年   30篇
  1995年   31篇
  1994年   29篇
  1993年   24篇
  1992年   14篇
  1991年   19篇
  1990年   16篇
  1989年   12篇
  1988年   14篇
  1987年   7篇
  1986年   8篇
  1985年   11篇
  1984年   9篇
  1983年   5篇
  1982年   6篇
  1981年   4篇
  1980年   3篇
  1978年   1篇
排序方式: 共有1000条查询结果,搜索用时 0 毫秒
1.
Size-related changes in hydraulic architecture, carbon allocation and gas exchange of Sclerolobium paniculatum (Leguminosae), a dominant tree species in Neotropical savannas of central Brazil (Cerrado), were investigated to assess their potential role in the dieback of tall individuals. Trees greater than ∼6-m-tall exhibited more branch damage, larger numbers of dead individuals, higher wood density, greater leaf mass per area, lower leaf area to sapwood area ratio (LA/SA), lower stomatal conductance and lower net CO2 assimilation than small trees. Stem-specific hydraulic conductivity decreased, while leaf-specific hydraulic conductivity remained nearly constant, with increasing tree size because of lower LA/SA in larger trees. Leaves were substantially more vulnerable to embolism than stems. Large trees had lower maximum leaf hydraulic conductance ( K leaf) than small trees and all tree sizes exhibited lower K leaf at midday than at dawn. These size-related adjustments in hydraulic architecture and carbon allocation apparently incurred a large physiological cost: large trees received a lower return in carbon gain from their investment in stem and leaf biomass compared with small trees. Additionally, large trees may experience more severe water deficits in dry years due to lower capacity for buffering the effects of hydraulic path-length and soil water deficits.  相似文献   
2.
Cardiac glycoside transport was investigated on the organ and whole plant level. Uptake experiments were carried out with shoot and root cultures of Digitalis lanata. In both systems primary cardenolides, i.e., those with a terminal glucose in their oligosaccharide side chain, were taken up against their concentration gradient, whereas the glucose-free secondary cardenolides were not. Active uptake of primary cardenolides was further evidenced by KCN inhibition of uptake. Using plantlets grown in vitro the long-distance transport of primary cardenolides from the leaves to the roots was demonstrated. Cardenolides were also detected in etiolated leaves, induced on plants with green leaves, which are supposed to be unable to synthezise cardenolides de novo, providing further evidence for long-distance transport. Several primary cardenolides were detected in the honeydew excreted by aphids fed on Digitalis lanata leaves, indicating that the phloem is a transporting tissue for cardenolides. On the other hand, the xylem sap obtained by applying the pressure-chamber technique was cardenolide-free. It was concluded that in Digitalis primary cardenolides serve as both the transport and the storage form of cardenolides. After their synthesis they are either stored in the vacuoles of the source tissue or loaded into the sieve tubes, from which they are unloaded at other sites where they are trapped in the vacuoles of the respective sink tissue.  相似文献   
3.
A hypothesis is presented that the availability of water for export of nitrogenous products from legume nodules is a major factor limiting the efficiency of symbiotic nitrogen fixation. Water for export of solutes in the xylem probably depends largely on the import of water and reduced carbon in the phloeum, and one function of respiration may be to dispose of reduced carbon in order to increase the supply of water. A second hypothesis presented is that control of gas diffusion in soybean nodules is largely restricted to the cortex nearby the vascular bundles, thus making possible the linkage of solute balances in xylem and phloem with resistance to diffusion. These concepts are used in a re-examination of literature on manipulations of nodules and nodulated plants such as lowering of light levels, water stress, defoliation, stem girdling, and alteration of oxygen supply. The concept of translocation as a major factor limiting efficiency of symbiotic fixation is consistent with the failure of superior rhizobial isolates to improve N input significantly, and this limitation could also prevent exploitation of superior bacterial symbionts in the future  相似文献   
4.
Abstract. Xylem sap was collected from individual leaves of intact transpiring lupin plants exposed to increasing concentrations of NaCl by applying pneumatic pressure to the roots. Concentrations of Na+ and Cl in the xylem sap increased linearly with increases in the external NaCl concentration, averaging about 10% of the external concentration. Concentrations of K+ and NO3, the other major inorganic ions in the sap, were constant at about 2.5 and 1.5 mol m−3, respectively. There was no preferential direction of Na + or Cl to either young or old leaves: leaves of all ages received xylem sap having similar concentrations of Na+ and Cl, and transpiration rates (per unit leaf area) were also similar for all leaves. Plants exposed to 120–160 mol m−3 NaCl rapidly developed injury of oldest leaves; when this occurred, the Na+ concentration in the leaflet midrib sap had increased to about 40 mol m−3 and the total solute concentration to 130 osmol m−3. This suggests that uptake of salts from the transpiration stream had fallen behind the rate of delivery to the leaf and that salts were building up in the apoplast.  相似文献   
5.
Abstract We tested the hypothesis that electrogenic ion pumps, working at the parenchyma symplast/xylem interface of pea hypocotyls, provide the driving force for K+ uptake from the xylem. Solutions of known composition were perfused through a hypocotyl segment. The K+ activity of the solution flowing out of the xylem (K+out) increased (i.e. K+ uptake decreased) when aerobic respiration was inhibited by lack of O2, and this was preceded by a decrease in Vpx (electrical potential difference between parenchyma symplast and xylem). Perfusion with auxin (1AA) and fusicoccin (FC) stimulated the electrogenic activity of the ‘xylem pumps’ (111 and 205% respectively) and stimulated uptake of K + from the xylem (with 71% and 29% respectively). The close correlation between xylem pump activity and K+ uptake corroborated the aforementioned hypothesis. Interestingly, inhibition of pump activity by anoxia was incomplete in the presence of FC. It is thought that FC increases the affinity of the ATP-requiring xylem pump for ATP, thus ensuring that ATP production during fermentation is sufficient to fuel the pump in the absence of O2.  相似文献   
6.
The loading of amino acids and nitrate into the xylem was investigated by collection and analysis of root-pressure exudate from the cut hypocotyl stumps of seedlings of Ricinus communis L. Glutamine was found to be the dominant amino acid in the exudate and also to be the amino acid which is transferred to the xylem most rapidly and accumulated to the greatest extent. The comparison between uptake and xylem loading showed significant differences in specificity between these two transport reactions, indicating a different set of transport systems. Nitrate is transferred to the xylem at a higher relative rate than any amino acid despite the great nitrate-storage capacity of the root system. Thus the supply of nitrate to Ricinus plants leads to enhanced nitrogen allocation to the shoots.  相似文献   
7.
Spinach plants (Spinacea oleracea L. cv. Estivato) were grown on nutrient solutions under deficient, normal and excess sulfate supply. In both young and mature plants net uptake of sulfate and its transport to the shoot increased with increasing sulfate supply, but both processes proceeded at a higher rate in young as compared to mature plants. The relative sulfate transport, i.e. the relative amount of the sulfate taken up that is transported to the shoot, decreased with increasing sulfate supply. Apparently, net uptake of sulfate is not strictly controlled by the sulfur demand of the shoot, but xylem loading appears to counteract excess transport of sulfate to the shoot. Fumigation with H2S or SO2 reduced net uptake of sulfate by the roots in sulfur-deficient plants and absolute as well as relative sulfate transport to the shoot independent of the three sulfate levels supplied to the plant. At the same time thiol contents of the shoot and the root were enhanced by fumigation with H2S and SO2. These findings are consistent with the idea that thiols produced in the leaves can mediate demand-driven control of sulfate uptake by the roots and its transport to the shoot.  相似文献   
8.
The diurnal water budget of developing grape (Vitis vinifera L.) berries was evaluated before and after the onset of fruit ripening (veraison). The diameter of individual berries of potted ‘Zinfandel’ and ‘Cabernet Sauvignon’ grapevines was measured continuously with electronic displacement transducers over 24 h periods under controlled environmental conditions, and leaf water status was determined by the pressure chamber technique. For well-watered vines, daytime contraction was much less during ripening (after veraison) than before ripening. Daytime contraction was reduced by restricting berry or shoot transpiration, with the larger effect being shoot transpiration pre-veraison and berry transpiration post-veraison. The contributions of the pedicel xylem and phloem as well as berry transpiration to the net diurnal water budget of the fruit were estimated by eliminating phloem or phloem and xylem pathways. Berry transpiration was significant and comprised the bulk of water outflow for the berry both before and after veraison. A nearly exclusive role for the xylem in water transport into the berry was evident during pre-veraison development, but the phloem was clearly dominant in the post-veraison water budget. Daytime contraction was very sensitive to plant water status before veraison but was remarkably insensitive to changes in plant water status after veraison. This transition is attributed to an increased phloem inflow and a partial discontinuity in berry xylem during ripening.  相似文献   
9.
伯乐树茎次生木质部结构的研究   总被引:7,自引:0,他引:7  
利用光镜和扫描电镜对伯乐树(Bretschneidera sinensisHem sl.)茎次生木质部的结构进行了研究。其主要特征为:(1)散孔材,有较明显的生长轮;(2)导管分子多为单穿孔板,少数为梯形复穿孔板,具螺纹加厚;(3)管胞、纤维-管胞和韧型木纤维同时存在,后两者有的具分隔;(4)木薄壁组织以轮界分布为主;(5)木射线多为大型异形射线,属异形IIB型;(6)缺乏侵填体、树脂道及分泌细胞。对伯乐树科(Bretschneideraceae)的系统位置作了探讨。  相似文献   
10.
Diurnal variations in the concentrations of major organic compounds occurred in xylem fluid extracted from Lagerstroemia indica L. The concentration of amino acids and the N/C ratio was at a maximum and that of organic acids was at a minimum between 1230 and 2030 h. Since the concentrations of total organic nitrogen, total amino acids and most individual amino acids (but not organic acids or sugars) were also proportional to xylem tension two experiments were performed to discern whether variations in chemistry were a consequence of diurnal changes in moisture stress. In the first experiment, L. indica , exposed to variable levels of moisture stress during midday, manifested an increase in organic acids and a reduction in the N/C ratio. In the second experiment, chemical profiles of xylem fluid were collected and compared for plants exposed to a natural photoperiod, constant darkness or continuous light at noon and midnight. After 1 day amino acids increased in concentration during midday for all treatments; the variation was greatest (10-fold) for plants in constant darkness where xylem tension varied from 0.20 to 0.25 MPa. Only plants exposed to continuous light lost a diurnal rhythm after 3 days. Thus, the circadian rhythm was endogenous, terminated in continuous light and was not mediated by changes in moisture stress. Glutamine accounted for most of the diurnal variation in total amino acids, organic nitrogen and the N/C ratio in xylem fluid.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号