首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1491篇
  免费   86篇
  国内免费   29篇
  1606篇
  2023年   11篇
  2022年   15篇
  2021年   25篇
  2020年   24篇
  2019年   31篇
  2018年   33篇
  2017年   22篇
  2016年   26篇
  2015年   37篇
  2014年   70篇
  2013年   109篇
  2012年   53篇
  2011年   65篇
  2010年   52篇
  2009年   66篇
  2008年   67篇
  2007年   63篇
  2006年   66篇
  2005年   72篇
  2004年   71篇
  2003年   59篇
  2002年   85篇
  2001年   30篇
  2000年   29篇
  1999年   31篇
  1998年   42篇
  1997年   41篇
  1996年   23篇
  1995年   23篇
  1994年   21篇
  1993年   26篇
  1992年   20篇
  1991年   15篇
  1990年   20篇
  1989年   14篇
  1988年   18篇
  1987年   9篇
  1986年   12篇
  1985年   14篇
  1984年   19篇
  1983年   11篇
  1982年   6篇
  1981年   10篇
  1980年   6篇
  1979年   16篇
  1977年   8篇
  1976年   4篇
  1975年   3篇
  1974年   4篇
  1973年   4篇
排序方式: 共有1606条查询结果,搜索用时 0 毫秒
1.
Ribulosebisphosphate carboxylase/oxygenase (EC 4.1.1.39) (rubisco) must be fully activated in order to catalyze the maximum rates of photosynthesis observed in plants. Activation of the isolated enzyme occurs spontaneously, but conditions required to observe full activation are inconsistent with those known to occur in illuminated chloroplasts. Genetic studies with a nutant of Arabidopsis thaliana incapable of activating rubisco linked two chloroplast polypeptides to the activation process in vivo. Using a reconstituted light activation system, it was possible to demonstrate the participation of a chloroplast protein in rubisco activation. These results indicate that a specific chloroplast enzyme, rubisco activase, catalyzes the activation of rubisco in vivo.  相似文献   
2.
Porphobilinogen is the substrate of two enzymes: porphobilinogen deaminase and porphobilinogen-oxygenase. The first one transforms it into the metabolic precursors of heme and the second diverts it from this metabolic pathway by oxidizing porphobilinogen to 5-oxopyrrolinones. Rat blood is devoid of porphobilinogen-oxygenase under normal conditions while it carries porphobilinogen-deaminase activity. When the rats were submitted to hypoxia (pO2 = 0.42 atm) for 18 days, the activity of porphobilinogen-oxygenase appeared at the tenth day of hypoxia and reached the maximum at the 14–16th day. It decreased to a half after 2 days (half-life of the enzyme) and disappeared after 4 days of return to normal oxygen pressure. Porphobilinogen-deaminase activity increased after the first day of hypoxia, reached a maximum at the 14–16th day and did not decrease to normal values until the 15th day after return to normal oxygen pressure. The activities of both prophobilinogen-oxygenase and porphobilinogen-deaminase were induced by administration of erythropoietin. When rats were made anaemic with phenylhydrazine, porphobilinogen-oxygenase activity also appeared in the blood cells. Although the reticulocyte concentration was higher when compared to that obtained under hypoxia, the activities of the oxygenase obtained under both conditions were comparable. Porphobilinogen-deaminase activity was always closely related to the reticulocyte content. The appearance of porphobilinogen-oxygenase under the described erythropoietic conditions was due to a de novo induction of the enzyme, as shown by its inhibition with actinomycin D and cycloheximide. Porphobilinogen-oxygenase as well as porphobilinogen-deaminase were present in the rat bone marrow under normal conditions. Their activities increased in phenylhydrazine treated rats. The properties and kinetics of porphobilinogen-oxygenase from the rat blood and bone marrow were determined and found to differ in several aspects.  相似文献   
3.
Tryptophan-containing peptides are selectively isolated from complex digests by taking advantage of changes in hydrophobicity and chromatographic mobility induced by reaction with o-nitrophenylsulfenyl chloride. The peptides are first located in crude fractions by monitoring the fluorescence during high-performance liquid chromatography and then chemically modified to facilitate their separation from contaminants during subsequent rechromatography.  相似文献   
4.
Growth of Euglena gracilis Z Pringsheim under photoheterotrophic conditions in a nitrogen-deprived medium resulted in progressive loss of chloroplastic material until total bleaching of the cells occurred. Biochemical analysis and ultrastructural observation of the first stages of the starvation process demonstrated an early lag phase (from 0 to 9 h) in which cells increased in size, followed by a period of cell division, apparently supported by the mobilization of some chloroplastic proteins such as the photosynthetic CO2-fixing enzyme ribulose-1,5-bisphosphate carboxylase/oxygenase. The degradation of the enzyme started after 9 h of starvation and was preceded by a transient concentration of this protein in pyrenoidal structures. Protein nitrogen and photosynthetic pigments as well as number of chloroplasts per cell decreased during proliferation through mere distribution among daughter cells. However, after 24 h, when cell division had almost ceased, there was a slow but steady decline of photosynthetic pigments. This was paralleled by observable ultrastructural changes including progressive loss of chloroplast structure and accumulation of paramylon granules and lipid globules in the cytoplasm. These findings reinforce the role of chloroplastic materials as a nitrogen source during starvation of E. gracilis in a carbon-rich medium. The excess of ribulose-1,5-bisphosphate carboxylase/oxygenase acts as a first reservoir that, once exhausted, is superseded by the generalized disassembly of the photosynthetic structures, if the adverse environment persists more than 24 h.  相似文献   
5.
Oscillations in many of photosynthetic quantities with a period of about 1 min can be routinely measured with higher plant leaves after perturbation of the steady state by sudden change in gas phase. Among all hypotheses suggested so far to explain the oscillations, an effect of ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBPCO) activation status to control the oscillations is highly probable, at least upon high temperature (HT) treatment when in vivo RuBPCO activity controlled by RuBPCO activase (RuBPCO-A) decreases. Therefore, we measured the oscillations in fluorescence signal coming from barley leaves (Hordeum vulgare L. cv. Akcent) after their exposure for various time intervals to different HTs in darkness. We also evaluated steady state fluorescence and CO2 exchange parameters to have an insight to functions of electron transport chain within thylakoid membrane and Calvin cycle before initiation of the oscillations. The changes in period of the oscillations induced by moderate HT (up to 43 °C) best correlated with changes in non-photochemical fluorescence quenching (qN) that in turn correlated with changes in gross photosynthetic rate (P G) and rate of RuBPCO activation (kact). Therefore, we suggest that changes in period of the oscillations caused by moderate HT are mainly controlled by RuBPCO activation status. For more severe HT (45 °C), the oscillations disappeared which was probably caused by an insufficient formation of NADPH by electron transport chain within thylakoid membrane as judged from a decrease in photochemical fluorescence quenching (qP). Suggestions made on the basis of experimental data were verified by theoretical simulations of the oscillations based on a model of Calvin cycle and by means of a control analysis of the model.  相似文献   
6.
A protocol for the efficient isotopic labeling of large G protein‐coupled receptors with tryptophan in Escherichia coli as expression host was developed that sufficiently suppressed the naturally occurring L‐tryptophan indole lyase, which cleaves tryptophan into indole, pyruvate, and ammonia resulting in scrambling of the isotopic label in the protein. Indole produced by the tryptophanase is naturally used as messenger for cell–cell communication. Detailed analysis of different process conducts led to the optimal expression strategy, which mimicked cell–cell communication by the addition of indole during expression. Discrete concentrations of indole and 15N2‐L‐tryptophan at dedicated time points in the fermentation drastically increased the isotopic labeling efficiency. Isotope scrambling was only observed in glutamine, asparagine, and arginine side chains but not in the backbone. This strategy allows producing specifically tryptophan labeled membrane proteins at high concentrations avoiding the disadvantages of the often low yields of auxotrophic E. coli strains. In the fermentation process carried out according to this protocol, we produced ~15 mg of tryptophan labeled neuropeptide Y receptor type 2 per liter medium. Biotechnol. Bioeng. 2013; 110: 1681–1690. © 2013 Wiley Periodicals, Inc.  相似文献   
7.
Homogenates from 4-day-old gherkin cotyledons and hypocotyls fractionated by sucrose density gradient centrifugation contain cinnamic acid 4-hydroxylase activity, the activity being highest in the endoplasmic reticulum fractions. These fractions also contain very low concentrations of cytochrome P450. Hydroxylase activity is dependent on NADPH and on molecular oxygen, is optimal at pH 7.5 and is inhibited by carbon monoxide. The enzyme is very sensitive to inhibition by 2-mercaptoethanol, but it is not inhibited by the product, p-coumaric acid. Further, its responses to various potential inhibitors are fairly typical of mixed function oxidases from other sources.  相似文献   
8.
9.
Plants can change the size of their light harvesting complexes in response to growth at different light intensities. Although these changes are small compared to those observed in algae, their conservation in many plant species suggest they play an important role in photoacclimation. A polyclonal antibody to the C-terminus of the Arabidopsis thaliana chlorophyllide a oxygenase (CAO) protein was used to determine if CAO protein levels change under three conditions which perturb chlorophyll levels. These conditions were: (1) transfer to shaded light intensity; (2) limited chlorophyll synthesis, and (3) during photoinhibition. Transfer of wild-type plants from moderate to shaded light intensity resulted in a slight reduction in the Chl a/b ratio, and increases in both CAO and Lhcb1 mRNA levels as well as CAO protein levels. CAO protein levels were also measured in the cch1 mutant, a P642L missense mutation in the H subunit of Mg-chelatase. This mutant has reduced total Chl levels and an increased Chl a/b ratio when transferred to moderate light intensity. After transfer to moderate light intensity, CAO mRNA levels decreased in the cch1 mutant, and a concomitant decrease in CAO protein levels was also observed. Measurements of tetrapyrrole intermediates suggested that decreased Chl synthesis in the cch1 mutant was not a result of increased feedback inhibition at higher light intensity. When wild-type plants were exposed to photoinhibitory light intensity for 3 h, total Chl levels decreased and both CAO mRNA and CAO protein levels were also reduced. These results indicate that CAO protein levels correlate with CAO mRNA levels, and suggest that changes in Chl b levels in vascular plants, are regulated, in part, at the CAO mRNA level.  相似文献   
10.
Wheat plants were grown from sowing to day 18 in 26-dm3 chambers at three different CO2 concentrations: 150 (-CO2), 350 (C, control), 800 (+CO2) mol mol-1. Afterwards, plants of the three variants were grown at the same natural CO2 concentration. Plant characteristics were measured just before the transfer (0 days after CO2 treatment, DAT), and at 5 – 8 DAT on the 1st leaf, and at 12 – 22 DAT on the 4th leaf. Decreased or increased CO2 concentrations caused acclimations which persisted after transplantation to natural CO2 concentration. At 5 – 8 DAT, stomatal density, stomatal conductance (gs), CO2 saturated net photosynthetic rate (PNsat0), radiation saturated net photosynthetic rate (PNsat1), and carboxylation efficiency () were higher in -CO2 plants and lower in +CO2 plants than in C plants. As compared with C plants, the photochemical efficiency () was lower in -CO2 and higher in -CO2 plants, however, chlorophyll (Chl) a, Chl b, Chl a–b and carotenoid contents were lower in both -CO2 and +CO2 plants. On the 4th leaf, which emerged on plant after finishing CO2 treatments, at 12 – 22 DAT, no differences in stomatal density and g, between treatments were observed. In -CO2 plants, pigment content and PNsat0 were higher, was lower, and PNsat1 and were not different from C plants. In contrast, in +CO2 plants, pigment content, PNsat1 and were lower, and PNsat0 and were unchanged. Leaf area, dry mass, and tiller development increased in +CO2 plants and decreased in -CO2 plants. In the interval between 8 and 22 DAT, lower net assimilation rate in +CO2 than in -CO2 plants was observed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号