首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   141篇
  免费   14篇
  国内免费   3篇
  158篇
  2021年   2篇
  2020年   1篇
  2018年   3篇
  2017年   6篇
  2016年   3篇
  2015年   4篇
  2014年   7篇
  2013年   16篇
  2012年   4篇
  2011年   3篇
  2010年   5篇
  2009年   6篇
  2008年   6篇
  2007年   2篇
  2006年   6篇
  2005年   1篇
  2004年   7篇
  2003年   6篇
  2002年   6篇
  2001年   2篇
  2000年   3篇
  1999年   1篇
  1998年   4篇
  1997年   6篇
  1996年   3篇
  1995年   3篇
  1993年   7篇
  1992年   5篇
  1991年   2篇
  1990年   4篇
  1989年   3篇
  1988年   2篇
  1987年   3篇
  1985年   1篇
  1984年   4篇
  1983年   2篇
  1982年   1篇
  1981年   4篇
  1979年   3篇
  1975年   1篇
排序方式: 共有158条查询结果,搜索用时 0 毫秒
1.
Jan Vymazal 《Hydrobiologia》1988,166(3):225-237
The results of experiments on the efficiency of periphyton communities for nutrient removal from polluted streams in a continuous flow-through are given. The artifical stream (5 m × 0.7 m × 0.5 m) was made of wood, with silon (a kind of nylon) screens, as a substratum for periphyton growth. The elimination of nutrients was monitored by ammonium, nitrite, nitrate and orthophosphate analyses. In addition, the elimination of organics and the decrease in trophic state were determined. During two field experiments a marked elimination of nitrogen and phosphorus was demonstrated. The maximum efficiency of ammonium and orthophosphate removal was 80% and 70%, respectively. Organic removal reached 35% (C.O.D.Mn-Kubel) and 54% (B.O.D.5). Inorganic and organic nutrient elimination caused significant changes in periphyton community structure in the outflow portion of the through, evaluated by the saprobic index and the similarity coefficient. The experiments confirmed that periphyton communities are a useful means of nutrient removal from polluted streams.  相似文献   
2.
In bright sunlight photosynthetic activity is limited by the enzymatic machinery of carbon dioxide assimilation. This supererogation of energy can be easily visualized by the significant increases of photosynthetic activity under high CO2 conditions or other metabolic strategies which can increase the carbon flux from CO2 to metabolic pools. However, even under optimal CO2 conditions plants will provide much more NADPH + H+ and ATP that are required for the actual demand, yielding in a metabolic situation, in which no reducible NADP+ would be available. As a consequence, excited chlorophylls can activate oxygen to its singlet state or the photosynthetic electrons can be transferred to oxygen, producing highly active oxygen species such as the superoxide anion, hydroxyl radicals and hydrogen peroxide. All of them can initiate radical chain reactions which degrade proteins, pigments, lipids and nucleotides. Therefore, the plants have developed protection and repair mechanism to prevent photodamage and to maintain the physiological integrity of metabolic apparatus. The first protection wall is regulatory energy dissipation on the level of the photosynthetic primary reactions by the so-called non-photochemical quenching. This dissipative pathway is under the control of the proton gradient generated by the electron flow and the xanthophyll cycle. A second protection mechanism is the effective re-oxidation of the reduction equivalents by so-called “alternative electron cycling” which includes the water-water cycle, the photorespiration, the malate valve and the action of antioxidants. The third system of defence is the repair of damaged components. Therefore, plants do not suffer from energy shortage, but instead they have to invest in proteins and cellular components which protect the plants from potential damage by the supererogation of energy. Under this premise, our understanding and evaluation for certain energy dissipating processes such as non-photochemical quenching or photorespiration appear in a quite new perspective, especially when discussing strategies to improve the solar energy conversion into plant biomass.  相似文献   
3.
Gingival connective tissue often has a composition resembling that of scar surrounding dental implant abutments. Increased cell adhesion, α‐smooth muscle actin (α‐SMA) expression and increased extracellular matrix deposition are a hallmark of fibrotic cells, but how topographic features influence gingival fibroblast adhesion and adoption of the α‐SMA positive myofibroblast phenotype associated with scarring is unknown. The purpose of the present study was to demonstrate whether implant topographies that limit adhesion formation would reduce myofibroblast differentiation and extracellular matrix deposition. Human gingival fibroblasts were cultured on PT (smooth) and SLA (roughened) titanium discs for varying time‐points. At 1 and 2 weeks after seeding, incorporation of α‐SMA into stress‐fibre bundles and fibronectin deposition was significantly higher on PT than SLA surfaces indicating differentiation of the cells towards a myofibroblast phenotype. Analysis of adhesion formation demonstrated that cells formed larger adhesions and more stable adhesions on PT, with more nascent adhesions observed on SLA. Gene expression analysis identified up‐regulation of 15 genes at 24 hrs on SLA versus PT associated with matrix remodelling. Pharmacological inhibition of Src/FAK signalling in gingival fibroblasts on PT reduced fibronectin deposition and CCN2 expression. We conclude that topographical features that reduce focal adhesion stability could be applied to inhibit myofibroblast differentiation in gingival fibroblasts.  相似文献   
4.
Brassinosteroid (BR)-induced rice (Oriza sativa L.) lamina joint (RLJ) inclination and its relationship to indole-3-acetic acid (IAA) and ethylene were investigated using BR isolated from beeswax. The effect of BR on RLJ inclination was time- and concentration-dependent. Etiolated lamina were more sensitive to BR than green lamina. The BR-induced inclination was accompanied by increased lamina fresh weight, total water content, free-water content, proton extrusion and ethylene production, and decreased bound-water content. Lamina dry weight was not changed. The inclination was due to greater expansion of the adaxial cells relative to the dorsal cells in the lamina joint. This response was caused by BR and/or BR-induced signal(s) that were transported from the leaf sheath to the leaf blade. Both BR-induced RLJ inclination and ethylene production were inhibited by cobalt chloride (CoCl2), an inhibitor of ACC oxidase. BR-induced inclination was much higher than that of IAA, and was inhibited by high concentration of 2,3,5-triiodobenzoic acid (TIBA), an inhibitor of IAA transport. A synergistic effect was observed between BR and IAA. These results suggest that the effects of BR on RLJ inclination and pulvinus cell expansion may be resulted from BR-increased water potential and proton extrusion in the lamina. The BR-induced RLJ inclination may involve the action of ethylene but may be independent of IAA.Abbreviations BR brassinolide or brassinosteroid(s) - IAA indole-3-acetic acid - TIBA 2,3,5-triiodobenzoic acid - RLJ rice lamina joint  相似文献   
5.
The early phase of 3T3 fibroblast interaction with sulfonated styrene copolymer surfaces, of two sulfonic group densities and thus of differing wettability, was studied. The sulfonic groups present on copolymer surfaces affected the behaviour of cells, i.e. they stimulated cell adhesion, activated cell spreading and influenced cytoskeleton reorganization. The relative number of adhering cells correlated, while the number of spreading cells inversely correlated, with the surface density of sulfonic groups. Cell shape and the pattern of distribution of F-actin, alpha-actinin and vinculin in the interacting cells also depend on the surface density of sulfonic groups. On surfaces of high sulfonic group density, highly polarized cells were observed with F-actin bundles. On surfaces of low sulfonic group density, the cells spread with a square-like morphology with F-actin organized in stress fibres. In contrast, the cells spread poorly on nonsulfonated surfaces and cell adhesion was unaffected by surface wettability. The contribution of alpha(5)beta(1), alpha(4), and beta(5)integrins to the cell interaction with fibronectin (FN) and vitronectin (VN) adsorbed from serum-containing medium on polymer surfaces was examined. Our results suggest that surface sulfonic groups influence the conformation of FN and VN adsorbed on polymer surfaces and, in turn, determine the integrins that are involved in cell adhesion.  相似文献   
6.
Boon Keng Lim 《Hydrobiologia》1997,358(1-3):297-299
Metamorphosis of fiddler crab Ilyoplax pusilla larvaefrom megalopal to first crab stage wasstudied in laboratory experiments under variousconditions of salinity and substratum. The hatchedzoea metamorphose through five stages before reachingmegalopal stage. The megalops were placed in a 20 mlPetri dishes (2–3 megalops/dish), with salinities of10, 20 or 30 . Each salinity level was tested eitherwith or without sandy mud substratum. Thirty to 35megalops were used in each of the six treatments. Theexperiment was carried out at a water temperature of28 ±0.5°C and with daily feeding of the diatomChaetoceros gracilis. Treatment of 20 salinity andsandy mud substratum revealed the highest metamorphicrate (87%), while in contrast no metamorphosis wasobserved at 30 salinity withoutsandy mud substratum. Duration of the metamorphosiswas about 16 days. Numerous malformed juvenile crabswere observed in treatments conductedwithout sandy mud substratum.  相似文献   
7.
The seasonal variation in periphyton dynamics has been studied upon artificial substratum (microscopic glass slides) under various light conditions during the periods May–October 1986 and May–September 1987, in Lake Veluwe. Some additional observations on the periphyton development upon leaves of Potamogeton pectinatus L. have been made simultaneously. Four different light conditions were created in an experimental setup by manipulating the photon flux density through artificial shading.Periphyton upon artificial substratum exhibited a relatively high abundance with a distinct seasonal pattern. Periphyton accrual rates were highest at the beginning of June and in August and September upon slides which were incubated for two weeks. Periphyton mass increased during May and June, decreased or remained about the same during July and subsequently increased until an upper plateau was reached upon slides which were incubated from the beginning of May onwards.Generally, periphyton mass was lower upon slides than upon P. pectinatus. The seasonal variation in periphyton mass was more pronounced upon P. pectinatus leaves than upon the slides.Attenuation by periphyton upon slides ranged from 5 to 65% after two weeks of incubation. Periphyton upon slides which had been incubated for more than two weeks demonstrated an attenuation of more than 85%.Water quality parameters other than photon flux density were probably more important in determining the periphyton dynamics, since only minor differences were observed in periphyton mass between the various light conditions. Chlorophyll-a content was higher with increased shading on various sampling dates.Periphyton, especially older periphyton consisted largely of settled silt and clay particles and to a lesser extent of detrital matter on both substrata. Living epiphytes were only a relatively small fraction.It is concluded that a reduction of resuspension of sediment particles, giving less suspended matter in the water column, will result in lower periphytic mass. Consequently, the quantity of photosynthetically active radiation reaching the submerged macrophytes is expected to increase considerably.  相似文献   
8.
Novel additives that act as substratum for attachment of the yeast cells, increased ethanol production in Saccharomyces cerevisiae. The addition of 2 g rice husk, straw, wood shavings, plastic pieces or silica gel to 100 ml medium enhanced ethanol production by 30–40 (v/v). Six distillery strains showed an average enhancement of 34 from 4.1 (v/v) in control to 5.5 (v/v) on addition of rice husk. The cell wall bound glycogen increased by 40–50 mg g –1 dry yeast while intracellular glycogen decreased by 10–12 mg g–1 dry yeast in cells grown in presence of substratum  相似文献   
9.
The position of Helicopsyche borealis (Hagen) (Trichoptera: Helicopsychidae) larvae on the substratum surface is dependent on the current regime but varies with larval size. All size classes of larvae chose significantly different positions on the substratum under high versus low current velocities. All size classes preferred exposed surfaces under low current velocities. Small larvae preferred the upper surfaces of substrata under low current velocities and were physically displaced under high current velocities. Larger larvae also occurred on upper surfaces, but were more evenly dispersed over all surfaces than smaller larvae, and tended to aggregate on down-stream faces of rocks during high flow.  相似文献   
10.
Twisted ribbons made of polystyrene were used as a packing material for the cultivation of anchorage dependent cells. Normal human fibroblast cells grown on this support in a laboratory scale reactor reached densities of about 5–7×105 cells/ml. The cells adhered strongly to the carrier and no cell detachment was observed upon transfer to serum free medium. The properties of this packing material and its potential use are discussed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号