首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   651篇
  免费   77篇
  国内免费   264篇
  992篇
  2024年   7篇
  2023年   19篇
  2022年   17篇
  2021年   29篇
  2020年   39篇
  2019年   40篇
  2018年   32篇
  2017年   34篇
  2016年   33篇
  2015年   38篇
  2014年   50篇
  2013年   46篇
  2012年   27篇
  2011年   36篇
  2010年   29篇
  2009年   33篇
  2008年   47篇
  2007年   46篇
  2006年   21篇
  2005年   38篇
  2004年   28篇
  2003年   34篇
  2002年   28篇
  2001年   17篇
  2000年   16篇
  1999年   18篇
  1998年   23篇
  1997年   16篇
  1996年   9篇
  1995年   18篇
  1994年   17篇
  1993年   10篇
  1992年   11篇
  1991年   10篇
  1990年   8篇
  1989年   4篇
  1988年   14篇
  1987年   9篇
  1986年   9篇
  1985年   11篇
  1984年   6篇
  1983年   3篇
  1982年   3篇
  1981年   2篇
  1980年   3篇
  1978年   1篇
  1977年   1篇
  1976年   2篇
排序方式: 共有992条查询结果,搜索用时 10 毫秒
1.
A lightweight finger printing stand is described which can be adjusted to the proper printing height. Based upon experience printing over 1,100 subjects, 12 advantages of using the stand are suggested.  相似文献   
2.
We consider estimation after a group sequential test. An estimator that is unbiased or has small bias may have substantial conditional bias (Troendle and Yu, 1999, Coburger and Wassmer, 2001). In this paper we derive the conditional maximum likelihood estimators of both the primary parameter and a secondary parameter, and investigate their properties within a conditional inference framework. The method applies to both the usual and adaptive group sequential test designs. (© 2004 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   
3.
4.
Osmotic potentials and individual epidermal cell turgor pressures were measured in the leaves of seedlings of Suaeda maritima growing over a range of salinities. Leaf osmotic potentials were lower (more negative) the higher the salt concentration of the solution and were lowest in the youngest leaves and stem apices, producing a gradient of osmotic potential towards the apex of the plant. Epidermal cell turgor pressures were of the order of 0.25 to 0.3 MPa in the youngest leaves measured, decreasing to under 0.05 MPa for the oldest leaves. This pattern of turgor pressure was largely unaffected by external salinity. Calculation of leaf water potential indicated that the gradient between young leaves and the external medium was not altered by salinity, but with older leaves, however, this gradient diminished from being the same as that for young leaves in the absence of NaCl, to under 30% of this value at 400 mM NaCl. These results are discussed in relation to the growth response of S. maritima.  相似文献   
5.
The responses to water stress of the bulk modulus of elasticity () and the apoplastic water fraction were examined using six sunflower cultivars of differing capacity for osmotic adjustment (OA). Water stress did not affect the partitioning of water between apoplastic (ca. 20%) and symplastic fractions in leaves which expanded during the exposure to stress in any genotype. Hence, no genotype-linked effects on either the buffering of cell water status during stress or on the estimates of bulk leaf osmotic potential could be expected. Genotypes differed in the degree of change in (estimated from pressure/volume [P/V] curves) and OA (estimated using both ln RWC/ ln o plots and P/V curves) induced by exposure to stress. In three genotypes increased significantly (p=0.05) as a consequence of stress, in another three change were small. OA was the only attribute of the three examined that could have contributed to turgor maintenance under stress. There was a strong negative association between leaf expansion and degree of OA across genotypes (r=–0.91) and a strong positive one between OA and (r=0.94). However all genotypes evidenced some degree of OA. These results are consistent with part of the genotype differences in OA being attributable to variations in leaf expansion during exposure to stress.  相似文献   
6.
The effect of increasing atmospheric CO2 concentrations on tissue water relations was examined in Betula populifolia, a common pioneer tree species of the northeastern U.S. deciduous forests. Components of tissue water relations were estimated from pressure volume curves of tree seedlings grown in either ambient (350 l l–1) or elevated CO2 (700 l l–1), and both mesic and xeric water regimes. Both CO2 and water treatment had significant effects on osmotic potential at full hydration, apoplasmic fractions, and tissue elastic moduli. Under xeric conditions and ambient CO2 concentrations, plants showed a decrease in osmotic potentials of 0.15 MPa and an increase in tissue elastic moduli at full hydration of 1.5 MPa. The decrease in elasticity may enable plants to improve the soil-plant water potential gradient given a small change in water content, while lower osmotic potentials shift the zero turgor loss point to lower water potentials. Under elevated CO2, plants in xeric conditions had osmotic potentials 0.2 MPa lower than mesic plants and decreased elastic moduli at full hydration. The increase in tissue elasticity at elevated CO2 enabled the xeric plants to maintain positive turgor pressures at lower water potentials and tissue water contents. Surprisingly, the elevated CO2 plants under mesic conditions had the most inelastic tissues. We propose that this inelasticity may enable plants to generate a favorable water potential gradient from the soil to the plant despite the low stomatal conductances observed under elevated CO2 conditions.  相似文献   
7.
Brood sex ratios (BSRs) have often been found to be nonrandom in respect of parental and environmental quality, and many hypotheses suggest that nonrandom sex ratios can be adaptive. To specifically test the adaptive value of biased BSRs, it is crucial to disentangle the consequences of BSR and maternal effects. In multiparous species, this requires cross-fostering experiments where foster parents rear offspring originating from multiple broods, and where the interactive effect of original and manipulated BSR on fitness components is tested. To our knowledge, our study on collared flycatchers (Ficedula albicollis) is the first that meets these requirements. In this species, where BSRs had previously been shown to be related to parental characteristics, we altered the original BSR of the parents shortly after hatching by cross-fostering nestlings among trios of broods and examined the effects on growth, mortality and recruitment of the nestlings. We found that original and experimental BSR, as well as the interaction of the two, were unrelated to the fitness components considered. Nestling growth was related only to background variables, namely brood size and hatching rank. Nestling mortality was related only to hatching asynchrony. Our results therefore do not support that the observed BSRs are adaptive in our study population. However, we cannot exclude the possibility of direct effects of experimentally altered BSRs on parental fitness, which should be evaluated in the future. In addition, studies similar to ours are required on various species to get a clearer picture of the adaptive value of nonrandom BSRs.  相似文献   
8.
 In leaves of Fraxinus excelsior L., malate and mannitol were characterized by 13C NMR spectroscopy and enzymatic specific assays as the major constituents of a soluble carbon fraction involved in an osmotic adjustment. During a summer drought where predawn leaf water potential of adult trees growing in a mesoxerophilic stand fell to – 4 MPa in August, malate and mannitol leaf contents increased by a factor of 1.8 and 2.2 respectively, compared to control trees growing on a flood plain. This drought stress led to concentrations as high as 280 mM and 600 mM for mannitol and malate, respectively. The effects of gradually developing water deficit were also studied in a semi-controlled environment in 3-year-old seedlings. When predawn leaf water potential reached -6 MPa, leaves displayed a low turgor pressure but stomatal conductance was still measurable. Malate and mannitol were also the main osmoticum involved. After rewatering, gas exchange capacities were largely restored. Altogether, these results show that the strong water-stress tolerance of Fraxinus excelsior is in part related to an accumulation of malate and mannitol. Received: 3 January 1996 / Accepted: 19 March 1996  相似文献   
9.
Abstract Midday water potentials of blades of the dune grasses Ammophila arenaria (L.) Link and Elymus mollis Trin. ex Spreng. growing in situ declined over the summer growing period, indicating a trend of increasing water stress. An analysis of the water relations characteristics of these blades using pressure-volume techniques demonstrated that both species increased bulk osmotic pressure at full hydration () and, therefore, bulk turgor as an acclimation response. In A. arenaria, however, the increase of osmotic pressure (+ 0.35 MPa) was entirely the result of decreasing symplasmic water content. The increase of osmotic pressure (+ 0.54 MPa) observed in E. mollis blades was due to solute accumulation (72% of Δ) and to a lesser degree, decreased symplasmic water content (28% of Δ). Osmotic adjustment in E. mollis blades was accompanied by a significant decrease in tissue elasticity (max went from 12 to 19 MPa). The elastic properties of A. arenaria blades remained constant over the same period and had a maximum modulus (10 MPa) that was always less than that of E. mollis, As estimated from Höfler plots, these seasonal adjustments of osmotic pressure and differences in tissue elasticity enabled plants in situ to maintain turgor pressure in the range of 0.5–0.6 MPa at the lowest water potentials of mid-August. Laboratorygrown plants exhibited the species-specific differences in osmotic pressure, turgor pressure, and tissue elasticity observed in field plants. Although certain alterations of leaf structure were expected to coincide with the observed changes and species-specific differences in symplasmic water content and tissue elasticity, these could not be detected by measurements of specific leaf weight or the ratio of dry matter to saturated water content.  相似文献   
10.
Abstract. The influence of a slow stress and recovery cycle on the pattern of leaf expansion in four diverse sunflower cultivars ( Helianthus annuus L. cvs. Hysun 31, Havasupai, Hopi and Seneca) was studied in a glasshouse. Stress had no significant effect on the time of flower bud emergence and anthesis, or on final leaf number, but delayed the appearance of leaves at high insertions in all cultivars except Hysun 31.
Leaf expansion was markedly reduced as the predawn leaf water potential decreased from −0.35 to −0.60 MPa, and the predawn turgor pressure decreased from 0.3 to 0.2 MPa, and expansion ceased at a predawn leaf water potential of about −1.0 MPa, i.e. when the predawn turgor pressure reached zero.
The leaves most reduced in final size when water was withheld were those at the insertions which grew the most rapidly in unstressed plants. The maximum reduction in final leaf size of 25–35% was similar in all cultivars and was due to retardation of the rate of leaf expansion: the duration of leaf expansion was actually increased by stress. However, leaves that were initiated during stress, but emerged after rewatering, had final leaf areas at least equal to those in the unstressed plants: in the cultivar Seneca, the final size of leaves of high insertion was significantly greater in stressed than unstressed plants, whereas in the three other cultivars the final leaf sizes were similar in both treatments. All four cultivars examined adjusted osmotically to the same degree, but leaf water potentials in one, Seneca, increased more rapidly after rewatering than in the other three, and this may have contributed to the greater relative leaf size in the leaves of high insertion in this cultivar.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号