全文获取类型
收费全文 | 380篇 |
免费 | 31篇 |
国内免费 | 3篇 |
专业分类
414篇 |
出版年
2024年 | 9篇 |
2023年 | 8篇 |
2022年 | 16篇 |
2021年 | 30篇 |
2020年 | 21篇 |
2019年 | 14篇 |
2018年 | 19篇 |
2017年 | 13篇 |
2016年 | 23篇 |
2015年 | 14篇 |
2014年 | 23篇 |
2013年 | 39篇 |
2012年 | 7篇 |
2011年 | 18篇 |
2010年 | 7篇 |
2009年 | 8篇 |
2008年 | 14篇 |
2007年 | 8篇 |
2006年 | 8篇 |
2005年 | 11篇 |
2004年 | 7篇 |
2003年 | 9篇 |
2002年 | 6篇 |
2001年 | 8篇 |
2000年 | 3篇 |
1999年 | 9篇 |
1998年 | 7篇 |
1997年 | 2篇 |
1996年 | 7篇 |
1995年 | 3篇 |
1994年 | 6篇 |
1993年 | 10篇 |
1992年 | 7篇 |
1991年 | 4篇 |
1990年 | 2篇 |
1989年 | 2篇 |
1988年 | 3篇 |
1987年 | 2篇 |
1986年 | 1篇 |
1985年 | 2篇 |
1984年 | 1篇 |
1983年 | 1篇 |
1982年 | 1篇 |
1976年 | 1篇 |
排序方式: 共有414条查询结果,搜索用时 19 毫秒
1.
Angelo N. Belcastro Wade Parkhouse Goeff Dobson James S. Gilchrist 《Molecular and cellular biochemistry》1988,83(1):27-36
The purpose of this study was to examine the Ca2+-Mg2+ myofibrillar ATPase and protein composition of cardiac and skeletal muscle following strenuous activity to voluntary exhaustion. Sprague-Dawley rats (200 g) were assigned to a control and exercised group, with the run group completing 25 m·min–1 and 8% grade for 1 hour. Following activity, the myocardial Ca2+–Mg2+ myofibrillar ATPase activity -pCa relationship had undergone a rightward shift in the curve. Electrophoretic analysis revealed a change in the pattern of cardiac myofibrillar protein bands, particularly in the 38–42 Kdalton region. Enzymatic analysis of myofibrillar proteins from plantaris muscle, revealed no change in Ca2+ regulation following exercise. Electronmicrographic and electrophoretic analysis revealed extensively disrupted sarcomeric structure and a change in the ratio of several plantaris myofibrillar proteins. No difference was observed for myosin: Actin: tropomyosin ratios; however a dramatic reduction in 58 and 95 Kdalton proteins were evident. The results indicate that prolonged running is associated with similar responses in cardiac and skeletal muscle myofibrillar protein compositions. The abnormalities in myofibrillar ultrastructure may implicate force transmission failure as a factor in exercised-induced muscle damage and/or fatigue. 相似文献
2.
Yujia Qiao;Adam J. Santanasto;Paul M. Coen;Peggy M. Cawthon;Steven R. Cummings;Daniel E. Forman;Bret H. Goodpaster;Jaroslaw Harezlak;Marquis Hawkins;Stephen B. Kritchevsky;Barbara J. Nicklas;Frederico G. S. Toledo;Pamela E. Toto;Anne B. Newman;Nancy W. Glynn; 《Aging cell》2024,23(6):e14015
Performance fatigability is typically experienced as insufficient energy to complete daily physical tasks, particularly with advancing age, often progressing toward dependency. Thus, understanding the etiology of performance fatigability, especially cellular-level biological mechanisms, may help to delay the onset of mobility disability. We hypothesized that skeletal muscle energetics may be important contributors to performance fatigability. Participants in the Study of Muscle, Mobility and Aging completed a usual-paced 400-m walk wearing a wrist-worn ActiGraph GT9X to derive the Pittsburgh Performance Fatigability Index (PPFI, higher scores = more severe fatigability) that quantifies percent decline in individual cadence-versus-time trajectory from their maximal cadence. Complex I&II-supported maximal oxidative phosphorylation (max OXPHOS) and complex I&II-supported electron transfer system (max ETS) were quantified ex vivo using high-resolution respirometry in permeabilized fiber bundles from vastus lateralis muscle biopsies. Maximal adenosine triphosphate production (ATPmax) was assessed in vivo by 31P magnetic resonance spectroscopy. We conducted tobit regressions to examine associations of max OXPHOS, max ETS, and ATPmax with PPFI, adjusting for technician/site, demographic characteristics, and total activity count over 7-day free-living among older adults (N = 795, 70–94 years, 58% women) with complete PPFI scores and ≥1 energetics measure. Median PPFI score was 1.4% [25th–75th percentile: 0%–2.9%]. After full adjustment, each 1 standard deviation lower max OXPHOS, max ETS, and ATPmax were associated with 0.55 (95% CI: 0.26–0.84), 0.39 (95% CI: 0.09–0.70), and 0.54 (95% CI: 0.27–0.81) higher PPFI score, respectively. Our findings suggested that therapeutics targeting muscle energetics may potentially mitigate fatigability and lessen susceptibility to disability among older adults. 相似文献
3.
Robert G. Lockie J. Jay Dawes Samuel J. Callaghan 《Biology of sport / Institute of Sport》2020,37(4):423
Volleyball players need to sprint and change direction during a match. Lower-body power, often measured by jump tests, could contribute to faster movements. How different jumps relate to linear and change-of-direction (COD) speed has not been analyzed in Division I (DI) collegiate women’s volleyball players. Fifteen female volleyball players completed the vertical jump (VJ), two-step approach jump (AppJ), and standing broad jump (SBJ). Peak power and power-to-body mass ratio (P:BM) were derived from VJ and AppJ height; relative SBJ was derived from SBJ distance. Linear speed was measured via a 20-m sprint (0–10 and 0–20 m intervals); COD speed was measured using the pro-agility shuttle. Pearson’s correlations (p < 0.05) calculated relationships between the power variables, and speed tests. There were no significant relationships between the power variables and the 0–10 m sprint interval. Greater VJ height (r = -0.534) and P:BM (r = -0.557) related to a faster 0–20 m sprint interval. This be due to a greater emphasis on the stretch-shortening cycle to generate speed over 20 m. However, although a 20-m sprint may provide a measure of general athleticism, the distance may not be specific to volleyball. This was also indicated as the AppJ did not relate to any of the speed tests. Nonetheless, VJ height and P:BM, and SBJ distance and relative SBJ, all negatively correlated with the proagility shuttle (r = -0.548 to -0.729). DI women’s collegiate volleyball players could develop absolute and relative power in the vertical and horizontal planes to enhance COD speed. 相似文献
4.
Natalia Santanielo Sanmy R. Nbrega Maíra C. Scarpelli Ieda F. Alvarez Gabriele B. Otoboni Lucas Pintanel Cleiton A. Libardi 《Biology of sport / Institute of Sport》2020,37(4):333
The aim of this study was to compare the effects of resistance training to muscle failure (RT-F) and non-failure (RT-NF) on muscle mass, strength and activation of trained individuals. We also compared the effects of these protocols on muscle architecture parameters. A within-subjects design was used in which 14 participants had one leg randomly assigned to RT-F and the other to RT-NF. Each leg was trained 2 days per week for 10 weeks. Vastus lateralis (VL) muscle cross-sectional area (CSA), pennation angle (PA), fascicle length (FL) and 1-repetition maximum (1-RM) were assessed at baseline (Pre) and after 20 sessions (Post). The electromyographic signal (EMG) was assessed after the training period. RT-F and RT-NF protocols showed significant and similar increases in CSA (RT-F: 13.5% and RT-NF: 18.1%; P < 0.0001), PA (RT-F: 13.7% and RT-NF: 14.4%; P < 0.0001) and FL (RT-F: 11.8% and RT-NF: 8.6%; P < 0.0001). All protocols showed significant and similar increases in leg press (RT-F: 22.3% and RT-NF: 26.7%; P < 0.0001) and leg extension (RT-F: 33.3%, P < 0.0001 and RT-NF: 33.7%; P < 0.0001) 1-RM loads. No significant differences in EMG amplitude were detected between protocols (P > 0.05). In conclusion, RT-F and RT-NF are similarly effective in promoting increases in muscle mass, PA, FL, strength and activation. 相似文献
5.
目的:探讨肌肉疲劳过程中sEMG功率谱变化与H 的关系以及可能存在的其它影响因素.方法:利用肌肉进行疲劳收缩结束后,短时间内肌肉pH值尚无明显改变的特性,观察恢复期30 s内s EMG功率谱的变化规律.八名男性受试者,以肱二头肌为目标肌肉,负荷强度为60%MVC,静态持续负荷至疲劳点后,在恢复期以同样负荷分别观察2 s、4 s、6 s、8 s、10 s、20 s、30 s时的sEMG信号特征.结果:肱二头肌在以60%MVC静态疲劳负荷过程中MPF呈线性下降.在疲劳负荷后的恢复期,MPF恢复极其迅速,运动结束后仅2 s,MPF已恢复到整个下降范围的26.5%;至30 s,MPF已恢复到整个下降范围的87.7%.结论:由[H ]增加引起的肌纤维动作电位传导速度下降不是决定sEMG功率谱左移的唯一因素,提示sEMG功率谱左移可能与神经源性的中枢机制的作用有关. 相似文献
6.
Eline Lindeman Frank Spaans Jos Reulen Pieter Leffers Jan Drukker 《Journal of electromyography and kinesiology》1999,9(6):427-384
In a randomized clinical trial the efficacy of strength training was studied in patients with myotonic dystrophy (n=33) and in patients with Charcot-Marie-Tooth disease (n=29). Measurements were performed at the start and after 8, 16 and 24 weeks of progressive resistance training. Surface electromyography (SEMG) of proximal leg muscles was recorded during isometric knee extension at maximum voluntary contraction (MVC) and at 20, 40, 60 and 80% of MVC. Changes in MVC, maximum electrical activity and torque–EMG ratios (TER) were calculated. Fatigue was studied by determining the changes in endurance and in the decline of the median frequency (Fmed) of the SEMG during a sustained contraction at 80% MVC. These parameters showed no significant changes after the training in either of the diagnostic groups. Only the Charcot-Marie-Tooth training group showed a gradual significant increase in mean MVC over the whole training period (21%). After 24 weeks, the increase in mean RMS was similar (25%), but this was mainly due to a sharp rise during the first 8 weeks of training (20%). The findings indicate that the initial strength increase was due to a neural factor, while the subsequent increase was mainly due to muscle hypertrophy. 相似文献
7.
This study aimed to test whether adding a rest recovery parameter, r, to the analytical three-compartment controller (3CC) fatigue model (Xia and Frey Law, 2008) will improve fatigue estimates during intermittent contractions. The 3CC muscle fatigue model uses differential equations to predict the flow of muscle between three muscle states: Resting (MR), Active (MA), and Fatigued (MF). This model uses a feedback controller to match the active state to target loads and two joint-specific parameters: F, fatigue rate controlling flow from active to fatigued compartments) and R, the recovery rate controlling flow from the fatigued to the resting compartments. This model does well to predict intensity-endurance time curves for sustained isometric tasks. However, previous studies find when rest intervals are present that the model over predicts fatigue. Intermittent rest periods would allow for the occurrence of subsequent reactive vasodilation and post-contraction hyperemia. We hypothesize a modified 3CC-r fatigue model will improve predictions of force decay during intermittent contractions with the addition of a rest recovery parameter, r, to augment recovery during rest intervals, representing muscle re-perfusion. A meta-analysis compiling intermittent fatigue data from 63 publications reporting decline in peak torque (% torque decline) were used for comparison. The original model over-predicted fatigue development from 19 to 29% torque decline; the addition of a rest multiplier significantly improved fatigue estimates to 6–10% torque decline. We conclude the addition of a rest multiplier to the three-compartment controller fatigue model provides a physiologically consistent modification for tasks involving rest intervals, resulting in improved estimates of muscle fatigue. 相似文献
9.
10.
Seongho Jang Eu Ddeum Park Hyung Joo Suh Sang Hun Lee Jin Soo Kim 《Bioscience, biotechnology, and biochemistry》2013,77(10):1716-1722
To investigate the activity of fermented deer antler on exercise endurance capacity, we evaluated endurance capacity in five-week-old male BALB/c mice by administering the fermented deer antler extract (FA) or the non-fermented deer antler extract (NFA) and then subjected the mice to exercise in the form of swimming. The mice administered 500?mg/kg/day of FA showed a significant increase in swimming time compared with mice administered placebo (16.55?min vs. 21.64?min, P?<?0.05). Serum lactate dehydrogenase (LDH), the marker of the liver and muscle damage, was significantly lower in FA groups. However, NFA groups did not show significantly different swimming time or serum LDH from that of the control group. Moreover, the FA-500 group had significantly higher hepatic superoxide dismutase (SOD) activity after forced swimming than the control and NFA groups (P?<?0.05). These findings suggest that fermentation may increase the exercise endurance capacity of the deer antler. 相似文献