首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   406篇
  免费   37篇
  国内免费   14篇
  457篇
  2023年   5篇
  2022年   4篇
  2021年   6篇
  2020年   16篇
  2019年   13篇
  2018年   17篇
  2017年   13篇
  2016年   12篇
  2015年   13篇
  2014年   17篇
  2013年   49篇
  2012年   18篇
  2011年   12篇
  2010年   14篇
  2009年   22篇
  2008年   19篇
  2007年   29篇
  2006年   14篇
  2005年   12篇
  2004年   14篇
  2003年   18篇
  2002年   13篇
  2001年   8篇
  2000年   6篇
  1999年   7篇
  1998年   2篇
  1997年   1篇
  1996年   12篇
  1995年   3篇
  1994年   7篇
  1993年   6篇
  1992年   3篇
  1991年   3篇
  1990年   4篇
  1989年   4篇
  1988年   4篇
  1987年   4篇
  1986年   3篇
  1985年   3篇
  1984年   8篇
  1983年   2篇
  1982年   1篇
  1981年   2篇
  1980年   2篇
  1979年   4篇
  1978年   3篇
  1977年   2篇
  1976年   2篇
  1975年   1篇
排序方式: 共有457条查询结果,搜索用时 15 毫秒
1.
2.
The effect of cell size on growth rates and some cellular contents of Thalassiosira nordenskioeldii Cleve has been measured at 0 and 10 C. At 0 C the growth rate did not vary with cell size. The 2 smallest clones at this temperature had reduced growth rates because of the induction of sexuality in that size range. The clones grown at 10 C showed a significant negative relationship between growth rate and valve diameter with the cell surface area/volume ratio positively related to growth rate. At both temperatures the smaller cells had proportionately more carbon and nitrogen/unit cell volume. The amount of chlorophyll a and silica/unit cell surface area increased with increasing cell surface area at both 0 and 10 C. Both the C/N and C/chl a ratios showed no significant change with cell size at either temperature but there was a significant increase in the C/chl a ratio at 0 C. The C/Si ratio decreased with increasing cell size at both 0 and 10 C.  相似文献   
3.
A limited number of support matrices have so far been developed for use in magnetically stabilized fluidized bed (MSFB) applications. We have developed a versatile magnetic silica support which can be derivatized readily for both adsorption chromatography and enzyme immobilization by well-known techniques. A magnetic pellicular bead is prepared by electrostatically depositing alternating layers of colloidal silica and cationic polymer onto macroscopic nickel core particles. The polymer is then burned out and the silica partially sintered to yield a porous shell with 5-80 m(2)/g of surface area. This magnetic composite was tested as a support for immobilizing invertase. Sucrose was continuously converted to its component monosaccharides with nearly constant activity over the first 8 days and retention of 50% of initial activity after 25 days.  相似文献   
4.
ABSTRACT

The structural and dynamical properties of water confined in nanoporous silica with a pore diameter of 2.7?nm were investigated by performing large-scale molecular dynamics simulations using the reactive force field. The radial distribution function and diffusion coefficient of water were calculated, and the values at the centre of the pore agreed well with experimental values for real water. In addition, the pore was divided into thin coaxial layers, and the average number of hydrogen bonds, hydrogen bond lifetime and hydrogen bond strength were calculated as a function of the radial distance from the pore central axis. The analysis showed that hydrogen bonds involving silanol (Si–OH) have a longer lifetime, although the average number of hydrogen bonds per atom does not change from that at the pore centre. The longer lifetime, as well as smaller diffusion coefficient, of these hydrogen bonds is attributed to their greater strength.  相似文献   
5.
In this study, two procedures for the immobilization of β-glucosidase on silica are compared. The first approach comprises a preliminary stabilization of β-glucosidase by coupling with dextran dialdehyde and subsequent immobilization of the obtained β-glucosidase dextran dialdehyde with aminopropylsilica. In the second approach, β-glucosidase is immobilized on silica modified with a dextran-dialdehyde coating. Enzyme immobilized via coupling with dextran dialdehyde and subsequent attachment with aminopropylsilica show a remarkably enhanced thermostability. Enzyme immobilized by the alternative approach demonstrated an inferior thermoresistance. The difference in behavior of the immobilized enzyme obtained via these two methods can be explained considering the number of links between the enzyme and carrier. Enzyme immobilized on dextran dialdehydecoated silica is fixed via a limited number of links. On the other hand, with soluble β-glucosidase-dextran conjugates, the enzyme configuration is already stabilized via a high number of links with the dextran backbone. It is clear from this study that the sequence of reactions in immobilizing enzymes on silica support via a dextran-dialdehyde linker has a significant effect on the final properties.  相似文献   
6.
Silicon is a non-essential element for plant growth. Nevertheless, it affects plant stress resistance and in some plants, such as grasses, it may substitute carbon (C) compounds in cell walls, thereby influencing C allocation patterns and biomass production. How variation in silicon supply over a narrow range affects nitrogen (N) and phosphorus (P) uptake by plants has also been investigated in some detail. However, little is known about effects on the stoichiometric relationships between C, N and P when silicon supply varies over a broader range. Here, we assessed the effect of silicon on aboveground biomass production and C:N:P stoichiometry of common reed, Phragmites australis, in a pot experiment in which three widely differing levels of silicon were supplied. Scanning electron microscopy (SEM) showed that elevated silicon supply promoted silica deposition in the epidermis of Phragmites leaves. This resulted in altered N:P ratios, whereas C:N ratios changed only slightly. Plant growth was slightly (but not significantly) enhanced at intermediate silicon supply levels but significantly decreased at high levels. These findings point to the potential of silicon to impact plant growth and elemental stoichiometry and, by extension, to affect biogeochemical cycles in ecosystems dominated by Phragmites and other grasses and sedges.  相似文献   
7.
高会  翟水晶  孙志高  何涛  田莉萍  胡星云 《生态学报》2018,38(17):6136-6142
2016年1—12月,选择闽江河口鳝鱼滩的短叶茳芏湿地、互花米草湿地以及二者的交错带湿地为研究对象,采用定位研究方法探讨了互花米草入侵影响下湿地土壤有效硅含量的时空变化特征。结果表明:互花米草入侵影响下3块湿地土壤有效硅含量随时间推移整体呈波动上升趋势;互花米草入侵显著提高了鳝鱼滩湿地30—60 cm土层土壤有效硅含量(P0.01),与短叶茳芏湿地相比,交错带湿地和互花米草湿地30—60 cm土层土壤有效硅含量分别增加了8.56%和19.97%,逐步线性回归分析表明土温和电导是影响其变化的重要因素(P0.01)。研究互花米草入侵影响下湿地土壤有效硅含量的变化特征,对于揭示湿地生态系统生源要素硅生物地球化学循环过程以及互花米草入侵及其扩张机制具有重要意义。  相似文献   
8.
A simple and effective strategy for fabrication of hydrogen peroxide (H2O2) biosensor has been developed by entrapping horseradish peroxidase (HRP) in chitosan/silica sol–gel hybrid membranes (CSHMs) doped with potassium ferricyanide (K3Fe(CN)6) and gold nanoparticles (GNPs) on platinum electrode surface. The hybrid membranes are prepared by cross-linking chitosan (CS) with 3-aminopropyltriethoxysilane (APTES), while the presence of GNPs improved the conductivity of CSHMs, and the Fe(CN)63−/4− was used as a mediator to transfer electrons between the electrode and HRP due to its excellent electrochemistry activity. UV–Vis absorption spectroscopy was employed to characterize the different components in the CSHMs and their interaction. The parameters influencing the performance of the resulting biosensor were optimized and the characteristic of the resulting biosensor was characterized by cyclic voltammetry and chronoamperometry. Linear calibration for hydrogen peroxide was obtained in the range of 3.5 × 10− 6 to 1.4 × 10− 3 M under the optimized conditions with the detection limit (S/N = 3) of 8.0 × 10− 7 M. The apparent Michaelis–Menten constant of the enzyme electrode was 0.93 mM. The enzyme electrode retained about 78% of its response sensitivity after 30 days. The system was applied for the determination of the samples, and the results obtained were satisfactory.  相似文献   
9.
A mixture of ergot alkaloids (agroclavine, elymoclavine, chanoclavine, and chanoclavine aldehyde) was separated from the Claviceps purpureafermentation broth by adsorption on inorganic adsorbents containing silica. The uptake of alkaloids depended on the concentration of adsorbent and pH. The adsorption capacity for of inorganic materials increased with increasing content of inorganic oxides such as MgO and CaO in the adsorbent. Using statistical thermodynamics, a simple mathematical model describing the multicomponent adsorption equilibrium is proposed and a numerical method suitable for fast computer simulation of multicomponent adsorption was developed.  相似文献   
10.
Silica is well known for its role as inducible defence mechanism countering herbivore attack, mainly through precipitation of opaline, biogenic silica (BSi) bodies (phytoliths) in plant epidermal tissues. Even though grazing strongly interacts with other element cycles, its impact on terrestrial silica cycling has never been thoroughly considered. Here, BSi content of ingested grass, hay and faeces of large herbivores was quantified by performing multiple chemical extraction procedures for BSi, allowing the assessment of chemical reactivity. Dissolution experiments with grass and faeces were carried out to measure direct availability of BSi for dissolution. Average BSi and readily soluble silica numbers were higher in faeces as compared with grass or hay, and differences between herbivores could be related to distinct digestive strategies. Reactivity and dissolvability of BSi increases after digestion, mainly due to degradation of organic matrices, resulting in higher silica turnover rates and mobilization potential from terrestrial to aquatic ecosystems in non-grazed versus grazed pasture systems (2 versus 20 kg Si ha−1 y−1). Our results suggest a crucial yet currently unexplored role of herbivores in determining silica export from land to ocean, where its availability is linked to eutrophication events and carbon sequestration through C–Si diatom interactions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号