首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   82篇
  免费   0篇
  2019年   1篇
  2015年   2篇
  2013年   1篇
  2011年   1篇
  2007年   1篇
  2006年   2篇
  2004年   4篇
  2003年   1篇
  2002年   3篇
  2001年   5篇
  2000年   3篇
  1999年   3篇
  1998年   2篇
  1997年   2篇
  1996年   5篇
  1995年   3篇
  1994年   2篇
  1993年   2篇
  1992年   7篇
  1991年   2篇
  1990年   4篇
  1989年   5篇
  1988年   7篇
  1987年   3篇
  1985年   3篇
  1984年   1篇
  1983年   1篇
  1982年   1篇
  1981年   5篇
排序方式: 共有82条查询结果,搜索用时 984 毫秒
1.
To ascertain the roles of the membrane proteins in cation/sarcolemmal membrane binding, isolated rat cardiac sarcolemmal vesicles were extensively treated with Protease (S. aureus strain V.8). SDS-gel electrophoresis, protein and phosphate analysis confirmed that at least 20–22% of the protein, but none of the phospholipid, was solubilized by this procedure, and that the remaining membrane proteins were extensively hydrolyzed into small fragments. The cation binding properties of the treated vesicles were then examined by analyzing their aggregation behavior. The results demonstrate that this procedure had no effect on the selectivity series for di- and trivalent cation binding, or the divalent cation-induced aggregation behavior of the sarcolemmal vesicles at different pHs, indicating that proteins are probably not involved in these interactions and cannot be the low affinity cation binding sites previously observed [21, 22]. It did, however, change the pH at which protons induced sarcolemmal vesicle aggregation, suggesting a possible role for proteins in these processes. Protease treatment also modified the effects of fluorescamine labelling on divalent cation-induced vesicle aggregation, indicating that the NH, groups being labelled with fluorescamine are located on the sarcolemmal proteins. Together, these results support the hypothesis that di- and trivalent cation binding to the sarcolemmal membrane is largely determined by lipid/lipid and/or lipid/carbohydrate interactions within the plane of the sarcolemmal membrane, and that membrane proteins may exert an influence on these interactions, but only under very specialized conditions.Abbreviations MES 2-(N-morpholino)ethanesulfonic acid - MOPS 3-(N-morpholino) propanesulfonic acid - HEPES N-2-Hydroxyethylpiperizine-N-2- ethanesulfonic acid - CHES 2(N-Cyclohexylamino) ethanesulfonic acid - DTT DL-Dithiothreitol - PMSF Phenylmethyl-sulfonyl fluoride  相似文献   
2.
The activity of phospholipid base exchange enzymes has been evaluated in cardiac sarcolemmal membranes from Syrian Golden hamsters and from a hamster strain (UM-X7.1) characterized by a genetic form of hypertrophic cardiomyopathy. No choline base exchange activity and only a little serine base exchange activity were detected, whereas the ethanolamine base exchange enzyme was found highly active in membranes from both strains. For this reason, the present study is focussed on the ethanolamine base exchange enzyme. The apparent Km for ethanolamine of ethanolamine base exchange enzyme from Syrian Golden membranes and from UM-X7.1 strain membranes are 18 and 32 μM, respectively. The specific activity of the sarcolemmal ethanolamine base exchange enzyme is lower in the UM-X7.1 strain than in Syrian Golden hamsters. The calcium-dependence of the enzyme appears different when the membranes from the two strains are compared. Indeed, after removal of the membrane-bound divalent cations, comparable activities are found in both membrane preparations, whereas, upon addition of Ca2+ to the incubation mixtures, the activity of the enzyme is enhanced in the membranes from Syrian Golden strain more than in those from UM-X7.1 strain. The cholesterol content of sarcolemmal membranes is higher in the cardiomyopathic strain than in the Syrian Golden hamsters. A possible relation between changes of the membrane lipid composition and of the ethanolamine base exchange activity is discussed.  相似文献   
3.
Effects of endotoxin administration on the ATP-dependent Ca2+ transport in canine cardiac sarcolemma were investigated. The results show that the sidedness of the sarcolemmal vesicles was not affected but the ATP-dependent Ca2+ transport in cardiac sarcolemma was decreased by 22 to 46% (p < 0.05) at 4 h following endotoxin administration. The kinetic analysis indicates that the Vmax for ATP and for Ca2+ were decreased by 50% (p < 0.01) and 32% (p < 0.01), respectively, while the Km values for ATP and Ca2+ were not significantly affected after endotoxin administration. Magnesium (1–5 mM) stimulated while vanadate (0.25–3.0 M) inhibited the ATP-dependent Ca2+ transport, but the Mg2+-stimulated and the vanadate-inhibitable activities remained significantly lower in the endotoxin-treated animals. These data demonstrate that endotoxin administration impairs the ATP-dependent Ca2+ transport in canine cardiac sarcolemma and that the impairment is associated with a mechanism not affecting the affinity towards ATP and Ca2+. Additional experiments show that the Ca2+ sensitivity of the Ca2+-ATPase activity was indifferent between the control and endotoxic groups suggesting that endotoxic injury impairs Ca2+ pumping without affecting Ca2+-ATPase activity. Since sarcolemmal ATP-dependent Ca2+ transport plays an important role in the regulation of cytosolic Ca2+ homeostasis, an impairment in the sarcolemmal ATP-dependent Ca2+ transport induced by endotoxin administration may have a pathophysiological significance in contributing to the development of myocardial dysfunction in endotoxin shock.  相似文献   
4.
The present study was designed to induce massive accumulation of calcium in the myocardium and to evaluate the effect of calcium overload on myocardial contractile function and biochemical activity of cardiac subcellular membranes. Rats were treated with an oral administration of 500,000 units/kg of vitamin D3 for 3 consecutive days, and their hearts were sampled on the 5th day for biochemical analysis. On the 4th and 5th days, heart rate, mean aortic pressure, left ventricular systolic pressure and left ventricular dP/dt were significantly lowered in vitamin D3-treated rats, demonstrating the existence of appreciable myocardial contractile dysfunction. Marked increases in the myocardial calcium (67-fold increase) and mitochondrial calcium contents (24-fold increase) were observed by hypervitaminosis D3. Mitochondrial oxidative phosphorylation and ATPase activity were significantly reduced by this treatment. A decline in sarcolemmal Na+, K+-ATPase activity was also observed, while relatively minor or insignificant changes in calcium uptake and ATPase activities of sarcoplasmic reticulum were detectable. Electron microscopic examination revealed calcium deposits in the mitochondria after vitamin D3 treatment. The results suggest that hypervitaminosis D3 produces massive accumulation of calcium in the myocardium, particularly in the cardiac mitochondrial membrane, which may induce an impairment in the mitochondrial function and eventually may lead to a failure in the cardiac contractile function.  相似文献   
5.
Summary Calcium binding and Na–Ca exchange activity were measured in isolated cardiac plasma membrane vesicles under various ionic conditions. A model was developed to describe the Ca binding characteristics of cardiac sarcolemmal vesicles using the Gouy-Chapman theory of the diffuse double layer with specific cation binding to phospholipid carboxyl and phosphate groups. The surface association constants used for Ca, Na, K and H binding to both of these groups were 7, 0.63, 0.3 and 3800m –1, respectively. This model allows the estimation of surface [Ca] under any specific ionic conditions. The effects of the divalent screening cation, dimethonium, on Ca binding and Na–Ca exchange were compared. Dimethonium had no significant effect on Ca binding at high ionic strength (150mm KCl), but strongly depressed Ca binding at low ionic strength. Dimethonium had no significant effect on Na–Ca exchange (Na-inside dependent Ca influx) at either high or low ionic strength. These results suggest that the Ca sites of the Na–Ca exchanger are in a physical environment where they are either not exposed to or not sensitive to surface [Ca].  相似文献   
6.
Although it is well-accepted that the phosphatidylinositol signalling transduction pathway, producing inositol-1,4,5-P3 (InsP3) and inositol-1,3,4,5-P4 (InsP4) as second messengers, functions in heart muscle, virtually nothing is known about the roles of the higher inositol polyphosphates such as inositolhexakisphosphate (InsP6). This study demonstrates that InSP6 has the ability to bind intracellularly, with different binding characteristics, to different myocardial membranes. Binding to purified sarcoplasmic reticulum (SR) membranes, purified sarcolemmal (SL) membranes as well as to viable mitochondria were characterized. Binding to all these membranes display high as well as low affinity binding sites, with differing affinities. Kd values of binding to SR were 32 and 383 nM, to SL 61 and 1312 nM, while those of mitochondrial binding were 230 and 2200 nM respectively.InsP4 binding was also investigated and displayed the following characteristics: to SR, one low affinity binding site (Kd = 203 nM) and to SL, a high as well as a low affinity binding site with Kd values of 41 and 2075 nM respectively. Presence of InsP3, the second messenger for SR calcium release, at concentrations of 1 nM, elevated the binding of InsP4 to SR and SL by a mean of 30% and 20% respectively.Fractionation of SR and SL membranes on sucrose density gradients, after solubilization with CHAPS, indicated that InsP6 bound to two separate protein peaks in both these membranes, while InsP4 bound to only one. In SR membranes, InsP4 bound preferentially to a protein separating at high sucrose density while it bound to a protein separating at low sucrose density in SL membranes.  相似文献   
7.
The influence of a phosphatidylinositol-specific phospholipase C treatment on rat heart sarcolemmal 5′-nucleotidase was investigated. Upon complete hydrolysis of all phosphatidylinositol in the sarcolemma, 75% of 5′-nucleotidase activity was found in the solubilized form. The insolubilized enzyme after this treatment has the same Km for AMP as the untreated, sarcolemmal-bound enzyme (0.04 mM), whereas the solubilized enzyme has a 40-fold increase in Km for AMP (0.16 mM). Other sarcolemmal-bound enzymes were not affected by the same treatment. Hence, the specific involvement of phosphatidylinositol in the binding of 5′-nucleotidase to the sarcolemma of the rat heart is clearly demonstrated.  相似文献   
8.
Vrbjar N  Pechánová O 《Life sciences》2002,71(15):1751-1761
The (Na,K)-ATPase is hypothesized to be involved in systemic vascular hypertension through its effects on smooth muscle reactivity and cardiac contractility. Investigating the kinetic properties of the above enzyme we tried to assess the molecular basis of alterations in transmembraneous efflux of Na(+) from cardiac cells in spontaneously hypertensive rats (SHR) with increased synthesis of nitric oxide (NO). In the investigated group of SHR the systolic blood pressure was increased by 64% and the synthesis of NO was increased by 60% in the heart. When activating the cardiac (Na,K)-ATPase with substrate, its activity was higher in SHR in the whole concentration range of ATP. Evaluation of kinetic parameters revealed an increase of the V(max) (by 37%) probably due to increased affinity of the ATP-binding site as indicated by the lowered K(m) value (by 38%) in SHR. During activation with Na(+), we observed no change in the enzyme activity below 10 mmol/l of NaCl whereas in the presence of higher concentrations of NaCl the (Na,K)-ATPase was stimulated. The value of V(max) increased (by 64%), however the K(Na) increased (by 106%), indicating an adaptation of the Na(+)-binding site of the enzyme to increased [Na(+)](i). Thus the (Na,K)-ATPase in our SHR group is able to extrude the excessive Na(+) from myocardial cells more effectively also at higher [Na(+)](i), while the enzyme from controls is unable to increase its activity further. This improvement of the (Na,K)-ATPase function is supported also by increased affinity of its ATP-binding site probably due to enhanced NO-synthesis.  相似文献   
9.
New methods were established for the rapid and simultaneous isolation of multiple sarcolemmal and sarcoplasmic reticular fractions from very small amounts (0.25-2.0 g) of skeletal muscle. Thebeta(2)-adrenergic receptor and calcium transport systems were used as indices of purity and functional integrity as well as being the focal points of the study. These methods were found to be suitable for the special needs of small tissue samples, allowed rapid preparation and were appropriate for skeletal muscle from various species, frogs to mammals. The sarcolemmalbeta(2)-adrenergic receptor was expressed in frogs and mammals at similar levels of expression (336-454 fmol. x mg(-1)). The calcium pump was also present in sarcolemmal and sarcoplasmic reticular fractions in all species but notable species differences were found. In sarcolemmal fractions, while calcium binding was uniformly low (<1 nmol. x mg(-1)), oxalate stimulation was variable: low in frogs ( approximately 1.05-fold) high in mammals (120-450-fold). In sarcoplasmic reticular fractions, calcium binding was low in frogs (4-9 nmol. x mg(-1)) and much higher in mammals (322-383 nmol. x mg(-1)); oxalate stimulated calcium transport to a much greater extent in frogs (<70-fold) than in mammals (1.6-2-fold). It is concluded that thebeta(2)-adrenergic receptor appears to be strongly conserved in skeletal muscle while the use of calcium pumps evolves from reliance in Amphibia on the sarcoplasmic reticular calcium pump to the use in Mammalia of calcium pumps from both the sarcoplasmic reticulum and the plasma membrane.  相似文献   
10.
In freeze tolerant wood frog Rana sylvatica, the freeze-induced liberation of glucose plays a critical role in survival in response to sub-zero temperature exposure. We have shown that the glycaemic response is linked to selective changes in the expression of hepatic adrenergic receptors through which catecholamines act to produce their hepatic glycogenolytic effects. The purpose of the present study was to determine if skeletal muscle, another catecholamine-sensitive tissue with glycogenolytic potential, displayed similar or different changes. In order to achieve these objectives, skeletal muscle derived from Rana sylvatica was studied in control, frozen and thawed states. In isolated sarcolemmal fractions, freezing effected an 88% decrease in beta(2)-adrenergic receptor expression but was without effect on the calcium pump; while thawing resulted in a recovery of the beta(2)-adrenergic receptor to 60% of control levels and a 2.4-fold increase in calcium transport. In isolated sarcoplasmic reticular fractions, freezing effected a 52% decrease in calcium binding and a 92% decrease in oxalate-stimulated calcium uptake; while thawing elicited partial normalization to control levels to 70% with respect to calcium binding and to 47% with respect to calcium uptake. Freezing and thawing were associated with increases and decreases, receptively, in blood glucose levels but were without effect on skeletal muscle glycogen content. Thus these muscle changes in Rana sylvatica in freezing and thawing are not linked to glycogen breakdown, are different from those previously seen in liver, and may provide a role in recovery of muscle function during thawing by protecting glycogen stores for contraction and maximizing extracellular calcium for excitation-contraction coupling in the frozen state. The involvement of thyroid hormone in triggering these muscle changes is discussed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号