首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1922篇
  免费   110篇
  国内免费   221篇
  2024年   4篇
  2023年   30篇
  2022年   14篇
  2021年   26篇
  2020年   36篇
  2019年   62篇
  2018年   40篇
  2017年   56篇
  2016年   50篇
  2015年   37篇
  2014年   61篇
  2013年   106篇
  2012年   55篇
  2011年   67篇
  2010年   38篇
  2009年   67篇
  2008年   70篇
  2007年   89篇
  2006年   93篇
  2005年   97篇
  2004年   60篇
  2003年   62篇
  2002年   80篇
  2001年   59篇
  2000年   58篇
  1999年   43篇
  1998年   36篇
  1997年   55篇
  1996年   45篇
  1995年   46篇
  1994年   63篇
  1993年   44篇
  1992年   43篇
  1991年   39篇
  1990年   45篇
  1989年   45篇
  1988年   38篇
  1987年   21篇
  1986年   40篇
  1985年   43篇
  1984年   31篇
  1983年   18篇
  1982年   38篇
  1981年   28篇
  1980年   24篇
  1979年   16篇
  1978年   15篇
  1977年   12篇
  1976年   7篇
  1975年   1篇
排序方式: 共有2253条查询结果,搜索用时 406 毫秒
1.
Due to the intensive mixing polymictic lakes should be homogenous. However, morphometric diversity and high water dynamics contribute to the differentiation of many parameters in various areas of the lakes. This study analyzes both phytoplankton and zooplankton to assess differences in water quality along the north–south axis of the longest lake in Poland. New phytoplankton indicators were applied for determining the lake's ecological status: the Q index based on functional groups and the PMPL (Phytoplankton Metric for Polish Lakes) index based on phytoplankton biomass. TSIROT index (Rotifer Trophic State Index), which comprises the percentage of species indicating a high trophic state in the indicatory group and the percentage of bacteriovorus in the Rotifera population, was used for zooplankton analysis.TP content was different at different sites – we observed its gradual increase from the south to the north. Spatial variation of phosphorus did not considerably affect plankton diversity. The phytoplankton was dominated by Oscillatoriales, typical of shallow, well-mixed eutrophic lakes. The ecological status of the lake based on the EQR (Ecological Quality Ratio) was poor or moderate. The zooplankton was dominated by rotifers (at almost all sites), which indicates a eutrophic state of the lake. The values of phytoplankton indices at the studied sites did not differ considerably; the differences resulted more from local conditions such as the contaminant inflow and the macrophyte development than water dynamics.We have demonstrated that in the lake dominated by filamentous Cyanobacteria the ecological status should be determined according to the PMPL index or other indices dependent on the dominant Cyanobacteria species. Since the Q index does not include the functional group S1, the results can lead to the false conclusion that water quality improves with an increased amount of phytoplankton. The high abundance of Cyanobacteria in the lake may have contributed to the poor growth of rotifers.  相似文献   
2.
Observations of a marked cessation of feeding in filter feeding animals maintained in flowing Narragansett Bay seawater in June 1985 drew our attention to a bloom of a golden alga 2 μm in diameter at unprecedented populations of 109 cells. L?1. This picoplankter lacked morphological features useful in discriminating it from other similar sized forms with either phase contrast or epifluorescence light microscopy. Natural populations of picoplankton, obtained from the height of the bloom until its decline, were examined in thin section with transmission electron microscopy. A cell with a single chloroplast, nucleus, and mitochondrion and an unusual exocellular polysaccharide-like layer was apparently the bloom alga. The ultrastructure of this alga is consistent with that of the Chrysophyceae, and a new genus and species, Aureococcus anophagefferens is described. Attempts to grow this previously unrecognized picoplanktonic alga as an obligate phototroph failed and only yielded cultures of other previously described picoalgae. Facultative and obligate phagotrophic protists with ingested cells of Aureococcus were only observed as the bloom waned and minute diatoms became common. Cells of A. anophagefferens with virus particles typical for picoalgae occurred throughout the bloom. Populations of the usually dominant photosynthetic picoplankter, the cyanobacterium Synechococcus Nägeli, were depressed during the bloom. This could be due in part to selective grazing on Synechococcus rather than Aureococcus by elevated populations of Calycomonas ovalis Wulff which accompanied the algal bloom.  相似文献   
3.
The copepod Pseudoboeckella poppei (Daday) (Calanoida, Centropagidae) was sampled from Sombre and Heywood Lakes on Signy Island, Antarctica (60° S, 45° W) between January 1984 and March 1985. Sombre Lake is clear and oligotrophic with little phytoplankton and a bottom sediment low in organic content. By contrast Heywood Lake is turbid and mesotrophic; a substantial phytoplankton develops in summer and the bottom sediments are comparatively rich in organics. Both lakes freeze over for much of the year, forcing the copepods to adopt a benthic feeding strategy over winter. Adult Pseudoboeckella feed on phytoplankton when this is available, but also on detritus, diatoms and short algal filaments stirred up from the sediment. In Heywood Lake, male copepods show a smooth seasonal trend in lipid content with lipid being synthesised in early summer and utilised in late summer and winter. The summer increase in lipid content is associated with an increase in dry weight. Female lipid contents show evidence of two peaks of egg production. In Sombre Lake both male and female copepods increase in size during summer and show a wider range of lipid contents than in Heywood Lake; it is likely that this is due to the poorer winter feeding conditions which necessitate the synthesis of a much larger store of reserves during the summer. In contrast to marine calanoid copepods, lipid stores are exclusively triacylglycerol with no trace of wax ester.  相似文献   
4.
Max M. Tilzer 《Hydrobiologia》1989,173(2):135-140
An array of factors simultaneously controls phytoplankton photosynthesis and hence the primary production process. Because their relative importance shifts both with depth and with season, the significance of individual factors cannot be resolved by in situ incubations, even if all relevant environmental and biotic variables are measured.Here a procedure is described by which in addition to in situ measurements, photosynthesis is simultaneously assessed in identical subsamples under constant temperature (10 °C) and light (0.66 mol m–2 h–1 PAR conditions, in vitro). By calculating photosynthesis per unit of chlorophyll, effects of shifting biomass on photosynthesis can be eliminated but seasonal variations of light-saturated photosynthesis generated by temperature, and vertical changes of light-requirements (e.g. by light-shade adaptation) remain obscure. Quotients of in situ photosynthetic rates divided by in vitro rates allow the quantification of light-mediated changes. Provided that photosynthesis measured in vitro is light-saturated, quotients in situ: in vitro rates should never exceed unity. They are a measure for the degree of light-limitation. In vitro rates normalized to chlorophyll give information on temporal changes caused by variations in photosynthetic capacity. In Lake Constance, mean cell size appears to control light-saturated assimilation numbers.  相似文献   
5.
The cold oligo-eurytherm diatomsCoscinodiscus concinnus W. Smith andRhizosolenia setigera Brightwell were cultured to determine their best competitive position by growth. Comparison of their generation times with those of other diatoms indicate that they reach this position between 6°C and 12°C. Both species grew between –1.5°C and about 20°C. The experiments indicate thatC. concinnus flowerings are possible in a deep water column, during periods of high light intensities. The simultaneous death of species in the upper layer is also caused by high light intensities.C. concinnus appeared in two morphological forms; the normal voluminous form, and a flatter form with a few intercalary bands only, filled with large oil-droplets. The latter appeared at 0°C and below, and at the upper temperature limit for growth of about 19°C–20°C. The separation of nov. spec. fromC. concinnus based on the absence or presence of a hyaline area and intercalary bands as identification characteristics should be reconsidered.  相似文献   
6.
M. D. Burch 《Hydrobiologia》1988,165(1):59-75
The annual cycle of phytoplankton in saline, meromictic Ace Lake (68°2S.4S, 78°11.1E) in the Vestfold Hills, Antarctica, was studied from January, 1979 to January 1980. Ace Lake has permanent gradients of temperature, salinity, dissolved oxygen, and hydrogen sulphide, and is ice covered with up to 2 m of ice for 10–12 months each year. The phytoplankton community had low diversity, consisting of only four species, all flagellates — a prasinophyte Pyramimonas gelidicola McFadden et al., a cryptophyte of the genus Cryptomonas; an unidentified colourless microflagellate, and an unarmoured dinoflagellate. These were restricted to the oxic zone of the lake from the surface to 10 m.The phytoplankton had a cycle of seven months of active growth over spring and summer. Low numbers of cells survived in the water column over winter. Spring growth was initiated below the ice by increased light penetration through the ice into the lake, enhanced at the time by the removal of surface snow which accumulated on the ice over winter. Peak phytoplankton biomass production was by the shade adapted P. gelidicola and occurred at the interface of the oxic and anoxic zones where substantial available nitrogen as ammonia is found.The three dominant phytoplankton species displayed distinct vertical stratification over the oxic zone. This stratification was not static and developed over spring as the flagellates migrated to preferred light climate zones. Mean cell volume of two of the flagellates varied significantly over the year. Minimum volumes were recorded in winter and volume increased progressively over spring to reach maximum mean cell volume in summer. Mean cell volume was positively correlated with light intensity (maximum ambient PAR at the respective depth for date of sample). Low cell volume in winter may be related to winter utilization of carbohydrate reserves by slow respiration, and may represent a survival mechanism.  相似文献   
7.
The relationship between specific environmental factors as independent variables and temporal changes in phytoplankton community structure in the Vaal River (a turbid system) during 1984 was investigated by employing different diversity indices. Temporal changes in community structure reflected temporal changes in certain environmental factors. Phytoplankton diversity, measured with Shannon-Wie H' and Hurlbert PIE indices, was related firstly to discharge and discharge derived variables (such as SO4, Si, N and P loading) and secondly to turbidity derived variables (such as euphotic zone depth). Discharge appears to be of prime importance in affecting diversity. Observations were made that shed new light on conditions contributing to the development of an August peak (dominated by Stephanodiscus hantzschii fo. tenuis and Micractinium pusillum) in phytoplankton concentration. Increased environmental stress may reduce the number of sensitive species, thus reducing interspecific competition between tolerant species which could then exploit the — for them — more favourable conditions resulting in an increase in their numbers to peak concentrations.  相似文献   
8.
Anna Similä 《Hydrobiologia》1988,161(1):149-157
Biomass development and vertical distribution of a Chlamydomonas population in a small humic forest lake was followed by daily sampling in May-June, 1984. Chlamydomonas dominated the phytoplankton spring bloom, forming 71% of the maximum phytoplankton biomass on 18 May. In early May the outflow rate was high and during the 24 hour period when the maximum rate of surface runoff was recorded (8–9 May), 43% of the Chlamydomonas biomass was flushed out of the lake, which delayed the onset of biomass increase. When surface runoff had slowed down Chlamydomonas biomass started increasing and during wax of the population most cells were < 10 µm in diameter. Population maximum lasted for one day (18 May) and there-after Chlamydomonas biomass decreased towards the end of the study. During wane of the population most cells were > 10 µm in diameter.  相似文献   
9.
The diel vertical distribution patterns of a migratory alga Cryptomonas marssonii in a small, steeply stratified humic lake were investigated during a summer season (10 diurnal experiments between May and September) using a close-interval Blakar-type sampler. The results indicate that the cells were phototactic; they were typically concentrated at the surface or subsurface during daylight, while in darkness the highest densities were recorded in deeper water, usually near the upper limit of anoxia. During a dense blue-green bloom in August the cells of C. marssonii were also concentrated by day into the same water layer, where oxygen was depleted. However, the cells seemed to avoid totally anoxic water. Because the vertical distribution pattern of C. marssonii had special diurnal and seasonal characteristics, care is needed when designing a sampling programme for a phytoplankton population dominated by this species.  相似文献   
10.
Data from four reservoirs representative of different trophic states and with different apparent optical properties were analyzed to determine the relationship of Secchi depth to algal biomass as measured by chlorophyll a. In the eutrophic reservoir Secchi depth was determined partially by the chlorophyll a content (r2 = 0.31) but only when chlorophyll a data from bloom conditions are included. In the two mesotrophic reservoirs, Secchi depth was entirely determined by non-algal turbidity. In the oligotrophic reservoir, Secchi depth was determined neither by chlorophyll a nor non-algal turbidity and was probably determined by dissolved color. When data from the four reservoirs were pooled (N = 205), 53% of the variation in Secchi depth was explained by: SD = 2.55–0.52 ln (Turbidity) + 0.005 (Chlorophyll a). It is apparent that attempts to estimate algal biomass for trophic state classification or other management practices from Secchi depth data are inappropriate even where moderate amounts of non-algal turbidity are present.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号