全文获取类型
收费全文 | 911篇 |
免费 | 108篇 |
国内免费 | 32篇 |
专业分类
1051篇 |
出版年
2024年 | 1篇 |
2023年 | 14篇 |
2022年 | 21篇 |
2021年 | 18篇 |
2020年 | 25篇 |
2019年 | 20篇 |
2018年 | 22篇 |
2017年 | 28篇 |
2016年 | 18篇 |
2015年 | 22篇 |
2014年 | 61篇 |
2013年 | 65篇 |
2012年 | 50篇 |
2011年 | 36篇 |
2010年 | 31篇 |
2009年 | 44篇 |
2008年 | 59篇 |
2007年 | 58篇 |
2006年 | 53篇 |
2005年 | 60篇 |
2004年 | 54篇 |
2003年 | 46篇 |
2002年 | 51篇 |
2001年 | 27篇 |
2000年 | 22篇 |
1999年 | 16篇 |
1998年 | 18篇 |
1997年 | 20篇 |
1996年 | 14篇 |
1995年 | 26篇 |
1994年 | 10篇 |
1993年 | 9篇 |
1992年 | 9篇 |
1991年 | 6篇 |
1990年 | 3篇 |
1989年 | 2篇 |
1988年 | 2篇 |
1986年 | 3篇 |
1985年 | 3篇 |
1984年 | 3篇 |
1982年 | 1篇 |
排序方式: 共有1051条查询结果,搜索用时 0 毫秒
1.
2.
Parthasarathy Manavalan Alan E. Smith John M. McPherson 《Journal of Protein Chemistry》1993,12(3):279-290
A sequence comparison of the two membrane-associated (MA) domains of the cystic fibrosis transmembrane conductance regulator (CFTR), multidrug resistance transporter (MDR), and -factor pheromone export system (STE6) proteins, each of which are believed to contain a total of 12 transmembrane (TM) segments, reveals significant amino acid homology and length conservation in the loop regions that connect individual TM sequences. Similar structural homology is observed between these proteins, hemolysin B (HLYB) and the major histocompatibility-linked peptide transporter, HAM1, the latter two which contain a single MA domain composed of six TM segments. In addition, there are specific sequences that are conserved within the TM segments of the five different membrane proteins. This observation suggests that the folding topologies of the MA domains of MDR, STE6, and CFTR in the plasma membrane are likely to be very similar. The sequence analysis also reveals that there are three characteristic motifs (a pair of aromatic residues, LTLXXXXXXP and GXXL) that are conserved in MDR, STE6, HLYB, HAM1, but not in CFTR. We propose that although CFTR may be evolutionarily related to these other membrane proteins, it belongs to a separate subclass. 相似文献
3.
Peter S. Thuy-Boun Ana Y. Wang Ana Crissien-Martinez Janice H. Xu Sandip Chatterjee Gregory S. Stupp Andrew I. Su Walter J. Coyle Dennis W. Wolan 《Molecular & cellular proteomics : MCP》2022,21(3):100197
The gut microbiota plays an important yet incompletely understood role in the induction and propagation of ulcerative colitis (UC). Organism-level efforts to identify UC-associated microbes have revealed the importance of community structure, but less is known about the molecular effectors of disease. We performed 16S rRNA gene sequencing in parallel with label-free data-dependent LC-MS/MS proteomics to characterize the stool microbiomes of healthy (n = 8) and UC (n = 10) patients. Comparisons of taxonomic composition between techniques revealed major differences in community structure partially attributable to the additional detection of host, fungal, viral, and food peptides by metaproteomics. Differential expression analysis of metaproteomic data identified 176 significantly enriched protein groups between healthy and UC patients. Gene ontology analysis revealed several enriched functions with serine-type endopeptidase activity overrepresented in UC patients. Using a biotinylated fluorophosphonate probe and streptavidin-based enrichment, we show that serine endopeptidases are active in patient fecal samples and that additional putative serine hydrolases are detectable by this approach compared with unenriched profiling. Finally, as metaproteomic databases expand, they are expected to asymptotically approach completeness. Using ComPIL and de novo peptide sequencing, we estimate the size of the probable peptide space unidentified (“dark peptidome”) by our large database approach to establish a rough benchmark for database sufficiency. Despite high variability inherent in patient samples, our analysis yielded a catalog of differentially enriched proteins between healthy and UC fecal proteomes. This catalog provides a clinically relevant jumping-off point for further molecular-level studies aimed at identifying the microbial underpinnings of UC. 相似文献
4.
Acireductone dioxygenase (ARD) from Klebsiella ATCC 8724 is a metalloenzyme that is capable of catalyzing different reactions with the same substrates (acireductone and O2) depending upon the metal bound in the active site. A model for the solution structure of the paramagnetic Ni2+-containing ARD has been refined using residual dipolar couplings (RDCs) measured in two media. Additional dihedral restraints
based on chemical shift (TALOS) were included in the refinement, and backbone structure in the vicinity of the active site
was modeled from a crystallographic structure of the mouse homolog of ARD. The incorporation of residual dipolar couplings
into the structural refinement alters the relative orientations of several structural features significantly, and improves
local secondary structure determination. Comparisons between the solution structures obtained with and without RDCs are made,
and structural similarities and differences between mouse and bacterial enzymes are described. Finally, the biological significance
of these differences is considered. 相似文献
5.
Orthologs are genes from different genomes that originate from a common ancestor gene by speciation event. They are most similar by the structure of encoded proteins and therefore should have a similar function. Here I apply the principle used for detection of structural orthology for a genome-wide analysis of gene expression. For this purpose, I determine the mutual similarity rank in all-by-all comparison of among-tissues expression patterns. The expression of most part of human–mouse orthologs in homologous tissues is poorly correlated (average mutual coexpression rank is only 4835 out of 18,092). Genes from evolutionarily labile gene families, which experience rapid turnover of family composition, are among those with the strongest expression change. However, the revealed phenomenon is not limited to them. There is no or very weak relationship between protein sequence divergence and mutual coexpression rank. Also, generally there is no relationship between the ratio of nonsynonymous to synonymous nucleotide substitutions and coexpression rank. This relationship is tangible only within evolutionarily labile gene families. These results indicate that despite of a similar biochemical function of orthologs reflected in the conserved protein sequence, the physiological (systemic) context of this function can be changed. Also, these results suggest that gene biochemical function and its physiological role in the organism can evolve independently. 相似文献
6.
There are frequent contacts between aromatic rings and sulfur atoms in proteins. However, it is unclear to what degree this putative interaction is stabilizing and what the nature of the interaction is. We have investigated the aryl-sulfur interaction by placing a methionine residue diagonal to an aromatic ring on the same face of a beta-hairpin, which places the methionine side chain in close proximity to the aryl side chain. The methionine (Met)-aryl interaction was compared with an equivalent hydrophobic and cation-pi interaction in the context of the beta-hairpin. The interaction between phenylalanine (Phe), tryptophan (Trp), or cyclohexylalanine (Cha) and Met stabilized the beta-hairpin by -0.3 to -0.5 kcal mole(-1), as determined by double-mutant cycles. The peptides were subjected to thermal denaturations that suggest a hydrophobic driving force for the interactions between Met and Trp or Cha. The observed interaction of Met or norleucine (Nle) with Trp or Cha are quite similar, implying a hydrophobic driving force for the Met-pi interaction. However, the thermodynamic data suggest that there may be some differences between the interaction of Met with Trp and Phe and that there may be a small thermodynamic component to the Met...Phe interaction. 相似文献
7.
An algorithm is presented for the accurate and rapid generation of multiple protein sequence alignments from tertiary structure comparisons. A preliminary multiple sequence alignment is performed using sequence information, which then determines an initial superposition of the structures. A structure comparison algorithm is applied to all pairs of proteins in the superimposed set and a similarity tree calculated. Multiple sequence alignments are then generated by following the tree from the branches to the root. At each branchpoint of the tree, a structure-based sequence alignment and coordinate transformations are output, with the multiple alignment of all structures output at the root. The algorithm encoded in STAMP (STructural Alignment of Multiple Proteins) is shown to give alignments in good agreement with published structural accounts within the dehydrogenase fold domains, globins, and serine proteinases. In order to reduce the need for visual verification, two similarity indices are introduced to determine the quality of each generated structural alignment. Sc quantifies the global structural similarity between pairs or groups of proteins, whereas Pij' provides a normalized measure of the confidence in the alignment of each residue. STAMP alignments have the quality of each alignment characterized by Sc and Pij' values and thus provide a reproducible resource for studies of residue conservation within structural motifs. 相似文献
8.
ATP synthases are motor complexes comprised of F0 and F1 parts that couple the proton gradient across the membrane to the synthesis of ATP by rotary catalysis. Although a great deal of information has been accumulated regarding the structure and function of ATP synthases, their motor functions are not fully understood. For this reason, we performed the alignments and analyses of the protein sequences comprising the core of the ATP synthase motor complex, and examined carefully the locations of the conserved residues in the subunit structures of ATP synthases. A summary of the findings from this bioinformatic study is as follows. First, we found that four conserved regions in the sequence of subunit are clustered into three patches in its structure. The interactions of these conserved patches with the and subunits are likely to be critical for energy coupling and catalytic activity of the ATP synthase. Second, we located a four-residue cluster at the N-terminal domain of mitochondrial OSCP or bacterial (or chloroplast) subunit which may be critical for the binding of these subunits to F1. Third, from the localizations of conserved residues in the subunits comprising the rotors of ATP synthases, we suggest that the conserved interaction site at the interface of subunit c and (mitochondria) or (bacteria and chloroplasts) may be important for connecting the rotor of F1 to the rotor of F0. Finally, we found the sequence of mitochondrial subunit b to be highly conserved, significantly longer than bacterial subunit b, and to contain a shorter dimerization domain than that of the bacterial protein. It is suggested that the different properties of mitochondrial subunit b may be necessary for interaction with other proteins, e.g., the supernumerary subunits. 相似文献
9.
Daiwen Yang Ronald A. Venters Geoffrey A. Mueller W.Y. Choy Lewis E. Kay 《Journal of biomolecular NMR》1999,14(4):333-343
HNCO-based 3D pulse schemes are presented for measuring 1HN-15N,15N-13CO, 1HN-13CO,13CO-13C and 1HN-13C dipolar couplings in 15N,13C,2-labeled proteins. The experiments are based on recently developed TROSY methodology for improving spectral resolution and sensitivity. Data sets recorded on a complex of Val, Leu, Ile (1 only) methyl protonated 15N,13C,2H-labeled maltose binding protein and -cyclodextrin as well as 15N,13C,2H-labeled human carbonic anhydrase II demonstrate that precise dipolar couplings can be obtained on proteins in the 30–40 kDa molecular weight range. These couplings will serve as powerful restraints for obtaining global folds of highly deuterated proteins. 相似文献
10.