首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2442篇
  免费   102篇
  国内免费   55篇
  2599篇
  2023年   41篇
  2022年   48篇
  2021年   62篇
  2020年   41篇
  2019年   64篇
  2018年   58篇
  2017年   34篇
  2016年   38篇
  2015年   56篇
  2014年   65篇
  2013年   137篇
  2012年   72篇
  2011年   68篇
  2010年   46篇
  2009年   76篇
  2008年   92篇
  2007年   82篇
  2006年   90篇
  2005年   88篇
  2004年   81篇
  2003年   74篇
  2002年   82篇
  2001年   75篇
  2000年   75篇
  1999年   54篇
  1998年   65篇
  1997年   74篇
  1996年   67篇
  1995年   66篇
  1994年   41篇
  1993年   50篇
  1992年   52篇
  1991年   47篇
  1990年   41篇
  1989年   39篇
  1988年   39篇
  1987年   30篇
  1986年   33篇
  1985年   49篇
  1984年   41篇
  1983年   38篇
  1982年   25篇
  1981年   11篇
  1980年   13篇
  1979年   12篇
  1978年   11篇
  1977年   12篇
  1976年   15篇
  1972年   5篇
  1971年   9篇
排序方式: 共有2599条查询结果,搜索用时 15 毫秒
1.
2.
Growth hormone-releasing factor (GRF) is a hypothalamic peptide named for its ability to induce release of growth hormone from the anterior pituitary. GRF also acts as a neurotransmitter in the suprachiasmatic nucleus/medial preoptic area (SCN/MPOA) to stimulate food intake. The purpose of this series of experiments was to explore the nature of GRF-induced feeding, with a particular emphasis on macronutrient selectivity, and to examine the role of opiate activity in the paraventricular nucleus of the hypothalamus (PVN). Chow intake stimulated by GRF microinjection (1 pmol/0.5 μl) into the SCN/MPOA was blocked by injection of methyl-naltrexone (3 μg/0.5 μl) into the PVN. In animals habituated to macronutrient diets (Teklad, WI), GRF preferentially stimulated intake of protein at 2 and 4 h postinjection, whereas it had no effect on carbohydrate intake. Further, this effect was blocked by injection of naloxone (40 nmol/0.5 μl) into the PVN. Microinjection of morphine (0, 1, 10, and 17 μg/0.5 μl) into the PVN also specifically stimulated protein intake at 2 and 4 h postinjection. These results suggest that feeding derived from GRF actions in the SCN/MPOA is macronutrient selective, and is dependent on PVN opiate activity for expression.  相似文献   
3.
4.
Summary 1. Corticotropin-releasing factor (CRF) is thought to be involved in the regulation of the diurnal activity of the hypothalamus-pituitary-adrenal (HPA) axis and to act as a neurotransmitter in the brain. To date it is unknown whether the binding sites of the central CRF system are subject to diurnal variations. 2. We measured the number of CRF binding sites over the course of a complete 24-hr light-dark cycle in the pituitary, amygdala, bed nucleus of the stria terminalis (BNST), cingulate cortex, visceral cortex, paraventricular nucleus of the hypothalamus, hippocampus, and locus ceruleus of rats byin vitro receptor autoradiography with iodinated ovine CRF. A 24-hr time course was also established for plasma CRF and corticosterone. 3. The diurnal pattern of plasma CRF does not correlate with the pattern of plasma corticosterone. Within the brain, CRF binding in the basolateral nucleus of the amygdala showed a U-shaped curve with maximum levels in the morning and a wide hallow between 1500 and 0100. A biphasic profile with a small depression in the afternoon and a more pronounced depression in the second half of the activity period is characteristic for the other brain areas and the pituitary. The profile for the pituitary correlates with those for the BNST and the area of the locus ceruleus. Furthermore, the diurnal pattern of CRF binding sites in the BNST correlates with that of the hippocampus, and the daytime pattern of the visceral cortex is similar to that of both the hippocampus and the BNST. 4. Since the CRF-binding profiles in the brain and the pituitary clearly differ from the profiles of both plasma CRF and corticosterone, one may assume that the diurnal pattern of central CRF binding sites is not directly coupled to the activity of the HPA axis.  相似文献   
5.
This study shows for the first time that perfusion of rat or hamster brain with a cyclohexylamine-paraformaldehyde mixture makes possible the observation by autoradiography of melatonin binding sites in structurally well-preserved fixed tissues. This result is a first step in the identification of melatonin-receptor-containing cell types by cytoautoradiography.  相似文献   
6.
Abstract: This study attempts to determine if projections ascending from the guinea pig cochlear nucleus (CN) could be glutamatergic and/or aspartatergic. Multiple radio frequency lesions were made to ablate the right CN. The ablation was verified histologically. To identify the principal targets of CN efferents, silver impregnation methods were used to localize the preterminal degeneration of fibers in transverse sections of the brainstem 5 and 7 days after CN ablation. CN efferents projected heavily to the lateral superior olive (LSO) ipsilaterally, the medial superior olive (MSO) bilaterally, and contralaterally to the medial (MNTB) and ventral (VNTB) nuclei of the trapezoid body, the ventral (VNLL) and intermediate nuclei of the lateral lemniscus and the central nucleus of the inferior colliculus (ICc). There were smaller projections to the lateral nucleus of the trapezoid body ipsilaterally, the dorsal and dorsomedial periolivary nuclei bilaterally, and the dorsal nucleus of the lateral lemniscus contralaterally. There were sparse projections to the VNLL and ICc ipsilaterally and the CN contralaterally, and a very sparse projection to the contralateral LSO. To determine if CN efferents were glutamatergic and/or aspartatergic, the fresh brainstem was sectioned transversely and samples of the LSO, MSO, MNTB, VNLL, and ICc were taken to measure the electrically evoked release and the uptake of d -[3H]Asp and [14C]Gly or [14C]GABA 3–5 days after the CN ablation. The release studies suggest that only certain of the histologically identified projections ascending from the CN may be glutamatergic and/or aspartatergic. CN ablation depressed d -[3H]Asp release in the MSO bilaterally and in the contralateral MNTB and VNLL, suggesting that the CN efferents to these nuclei may use glutamate or aspartate as a transmitter. It was unclear whether a marginal depression of d -[3H]Asp release in the ipsilateral LSO reflected the presence of glutamatergic CN projections to this nucleus. d -[3H]Asp release in the ICc was unaffected, suggesting that CN efferents to this nucleus may not be glutamatergic. There were no deficits in d -[3H]Asp uptake. [14C]Gly release from the LSO and MSO was unchanged. [14C]Gly uptake was unchanged in the MSO and depressed only in the contralateral LSO, possibly reflecting subnormal uptake activity in endings contributed by contralateral MNTB cells that had lost their CN efferents. [14C]GABA uptake in the MNTB, VNLL, and ICc was unchanged. [14C]GABA release was unchanged in the VNLL and ICc. [14C]GABA release was depressed only in the contralateral MNTB, possibly reflecting the loss of a small complement of GABAergic CN efferents and the reaction of GABAergic projections from the contralateral VNTB to their loss of CN efferents.  相似文献   
7.
Price  M. T.  Olney  J. W.  Cicero  T. J. 《Cell and tissue research》1977,182(4):537-540
Summary The arcuate nucleus of the hypothalamus (AH) of male rats which had been treated either with estradiol benzoate (E2B) or cyproterone acetate (CPA) was examined ultrastructurally for the presence of whorls of endoplasmic reticulum. The incidence of whorl containing neurons (WCN) was 2–4 times higher in the AH of animals treated for 2–3 weeks with E2B or for 2 weeks with CPA than in the AH of oil treated controls. CPA is a powerful anti-androgen while E2B acts both peripherally and centrally to limit testosterone production. These findings, together with previous evidence that whorls proliferate in AH of male rats deprived of androgen by morphine treatment or castration, suggest that steroid feedback (androgen alone or both androgen and estrogen) plays an important role in AH whorl proliferation. The possibility that WCN may be LH-RH containing neurons is suggested by the close correspondence between the number and location of WCN within AH as determined in this study and the distribution of LH-RH containing cells reported by others.The authors are indebted to Schering AG for supplying cyproterone acetate for this study. This work was supported by grants DA-00259, NS-09156 and MH-14677 from U.S.P.H.S.Research Scientist Development Award MH-38894Research Scientist Development Award MH-70180  相似文献   
8.
This study examined the effect of aging on the relative number of dopamine (DA) nerve terminals in human caudate nucleus, their content of tyrosine hydroxylase (TH) protein, and the relative abundance of TH monomers with different molecular weights. Preliminary studies on brain tissue cryopreservation, performed with rat striatum, indicated that intact synaptosomes can be prepared from fresh tissue slowly frozen in 0.32 M sucrose with 5% dimethyl sulfoxide and then thawed rapidly prior to synaptosome preparation. Synaptosomes were prepared in this manner from postmortem caudate nucleus tissue obtained from normal humans 1 month to 63 years of age. To determine the relative number of DA nerve terminals for each individual, dopaminergic synaptosomes were selectively labeled with a monoclonal antibody to TH and quantified by fluorescence-activated cell sorting. To determine the relative amount of TH protein for each individual, the concentration of TH protein in the same synaptosomal preparations was determined using immunoblots. Our results suggest that caudate TH levels plateau soon after birth and tend to remain relatively stable during aging, since no changes in either the relative number of TH-containing nerve terminals or the concentration of TH protein were found in subjects 15-63 years of age. In light of previous studies showing an age-related loss of DA cell bodies, these findings suggest that remaining DA neurons compensate to maintain caudate levels of TH protein and TH-containing nerve terminals. Immunoblot studies identified three forms of TH monomer (60.6, 61.7, and 65.1 kDa), indicating that mRNAs coding for high molecular mass forms of TH may be actively translated in human brain. No age-related differences in the relative abundance of these forms were found.  相似文献   
9.
Pain is a multidimensional perception that includes unpleasant somatosensory and affective experiences; however, the underlying neural circuits that mediate different components of pain remain elusive. Although hyperactivity of basolateral amygdala glutamatergic (BLAGlu) neurons is required for the somatosensory and emotional processing of pain, the precise excitatory inputs to BLAGlu neurons and their roles in mediating different aspects of pain are unclear. Here, we identified two discrete glutamatergic neuronal circuits in male mice: a projection from the insular cortex glutamatergic (ICGlu) to BLAGlu neurons, which modulates both the somatosensory and affective components of pain, and a projection from the mediodorsal thalamic nucleus (MDGlu) to BLAGlu neurons, which modulates only the aversive-affective component of pain. Using whole-cell recording and fiber photometry, we found that neurons within the IC→BLA and MD→BLA pathways were activated in mice upon inflammatory pain induced by injection of complete Freund’s adjuvant (CFA) into their paws. Optical inhibition of the ICGlu→BLA pathway increased the nociceptive threshold and induced behavioral place preference in CFA mice. In contrast, optical inhibition of the MDGlu→BLA pathway did not affect the nociceptive threshold but still induced place preference in CFA mice. In normal mice, optical activation of the ICGlu→BLA pathway decreased the nociceptive threshold and induced place aversion, while optical activation of the MDGlu→BLA pathway only evoked aversion. Taken together, our results demonstrate that discrete ICGlu→BLA and MDGlu→BLA pathways are involved in modulating different components of pain, provide insights into its circuit basis, and better our understanding of pain perception.  相似文献   
10.
The ultrastructure of the retrocerebral endocrine-aortal complex of the earwig, Euborellia annulipes has been studied. The space between the inner and outer stromal layers of the aorta is occupied by numerous axon terminals and pre-terminals containing large electron dense granules (NS-I) of approximately 100 to 220 nm and a few axon terminals having small granules (NS-II) of approximately 40 to 90 nm; the former appear to belong to medial neurosecretory A-cells, and the latter to the B-cells of the brain. The corpora cardiaca consist of intrinsic cells with mitochondria and multivesicular bodies. Granules of type NS-II and NS-III are observed in the axon terminals and pre-terminals in the corpora cardiaca. The NS-II are identical to those found in the aorta and are probably the secretions of the lateral B-cells. Granules of type NS-III are 40 to 120 nm and electron dense, and are intrinsic in origin. Similar granules occur in the intrinsic cells of the corpora cardiaca. E M studies have confirmed the rôle of the aorta as a neurohaemal organ for the medial neurosecretory cells, and the corpora cardiaca for the lateral neurosecretory cells of the brain. The corpora cardiaca also act as a reservoir for the intrinsic secretion. The corpus allatum is a solid body consisting of parenchymal cells with prominent nuclei, mitochondria, and endoplasmic reticulum. In between its cells are occasional glial cells and also neurosecretory as well as non-neurosecretory axons. The gland is devoid of A-cell NSM.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号