全文获取类型
收费全文 | 459篇 |
免费 | 22篇 |
国内免费 | 22篇 |
专业分类
503篇 |
出版年
2023年 | 4篇 |
2022年 | 4篇 |
2021年 | 7篇 |
2020年 | 4篇 |
2019年 | 7篇 |
2018年 | 13篇 |
2017年 | 11篇 |
2016年 | 12篇 |
2015年 | 20篇 |
2014年 | 24篇 |
2013年 | 43篇 |
2012年 | 8篇 |
2011年 | 14篇 |
2010年 | 14篇 |
2009年 | 26篇 |
2008年 | 32篇 |
2007年 | 33篇 |
2006年 | 27篇 |
2005年 | 27篇 |
2004年 | 15篇 |
2003年 | 16篇 |
2002年 | 14篇 |
2001年 | 11篇 |
2000年 | 19篇 |
1999年 | 20篇 |
1998年 | 9篇 |
1997年 | 13篇 |
1996年 | 5篇 |
1995年 | 6篇 |
1994年 | 9篇 |
1993年 | 7篇 |
1992年 | 3篇 |
1991年 | 3篇 |
1990年 | 4篇 |
1989年 | 2篇 |
1986年 | 1篇 |
1985年 | 5篇 |
1984年 | 3篇 |
1983年 | 1篇 |
1982年 | 4篇 |
1976年 | 1篇 |
1974年 | 2篇 |
排序方式: 共有503条查询结果,搜索用时 15 毫秒
1.
2.
Kazutoshi Shindo Ayako Osawa Yuki Kasai Nobuko Iba Ayako Saotome Norihiko Misawa 《Journal of Molecular Catalysis .B, Enzymatic》2007,48(3-4):77-83
Bioconversion experiments of various mono- or di-substituted naphthalenes such as dimethylnaphthalenes were carried out using the cells of Escherichia coli that expressed aromatic dihydroxylating dioxygenase genes (phnA1A2A3A4 and phdABCD) from polycyclic aromatic hydrocarbon-utilizing marine bacteria, Nocardioides sp. KP7 and Cycloclasticus sp. A5, respectively. We found that the former dioxygenase PhnA1A2A3A4 had broad substrate preference for these compounds and often was able to hydroxylate their methyl groups. Specifically, 1,4-dimethylnaphthalene was predominantly bioconverted into 1,4-dihydroxymethylnaphthalene. 相似文献
3.
4.
《Bioscience, biotechnology, and biochemistry》2013,77(1):26-33
Rhodococcus jostii RHA1 is a polychlorinated biphenyl degrader. Multi-component biphenyl 2,3-dioxygenase (BphA) genes of RHA1 encode large and small subunits of oxygenase component and ferredoxin and reductase components. They did not express enzyme activity in Escherichia coli. To obtain BphA activity in E. coli, hybrid BphA gene derivatives were constructed by replacing ferredoxin and/or reductase component genes of RHA1 with those of Pseudomonas pseudoalcaligenes KF707. The results obtained indicate a lack of catalytic activity of the RHA1 ferredoxin component gene, bphAc in E. coli. To determine the cause of inability of RHA1 bphAc to express in E. coli, the bphAc gene was introduced into Rosetta (DE3) pLacI, which has extra tRNA genes for rare codons in E. coli. The resulting strain abundantly produced the bphAc product, and showed activity. These results suggest that codon usage bias is involved in inability of RHA1 bphAc to express its catalytic activity in E. coli. 相似文献
5.
Mohammadi M Chalavi V Novakova-Sura M Laliberté JF Sylvestre M 《Biotechnology and bioengineering》2007,97(3):496-505
Optimized plant-microbe bioremediation processes in which the plant initiates the metabolism of xenobiotics and releases the metabolites in the rhizosphere to be further degraded by the rhizobacteria is a promising alternative to restore contaminated sites in situ. However, such processes require that plants produce the metabolites that bacteria can readily oxidize. The biphenyl dioxygenase is the first enzyme of the bacterial catabolic pathway involved in the degradation of polychlorinated biphenyls. This enzyme consists of three components: the two sub-unit oxygenase (BphAE) containing a Rieske-type iron-sulfur cluster and a mononuclear iron center, the Rieske-type ferredoxin (BphF), and the FAD-containing ferredoxin reductase (BphG). In this work, based on analyses with Nicotiana benthamiana plants transiently expressing the biphenyl dioxygenase genes from Burkholderia xenovorans LB400 and transgenic Nicotiana tabacum plants transformed with each of these four genes, we have shown that each of the three biphenyl dioxygenase components can be produced individually as active protein in tobacco plants. Therefore, when BphAE, BphF, and BphG purified from plant were used to catalyze the oxygenation of 4-chlorobiphenyl, detectable amounts of 2,3-dihydro-2, 3-dihydroxy-4'-chlorobiphenyl were produced. This suggests that creating transgenic plants expressing simultaneously all four genes required to produce active biphenyl dioxygenase is feasible. 相似文献
6.
Rapid method of in vitro multiplication of date palm was developed. Shoot tips were cultured on Murashige and Skoog (MS) medium supplemented with 2 mg dm–3 dimethylaminopurine (2iP) + 1 mg dm–3 naphthalene acetic acid (NAA). Shoot buds were proliferated from white nodular cultures on hormone free medium. Shoot bud proliferation strongly enhanced when cultured on MS-medium contained 3 mg dm–3 2iP + 0.5 mg dm–3 NAA. Culturing on full-strength MS medium showed higher multiplication rate compared with half-strength MS medium. Among four concentrations of sucrose used, 30 g dm–3 speeded up the bud proliferation more than 10, 20 and 40 g dm–3. However, the largest shoot buds were observed with 40 g dm–3 sucrose. Solidification of culture media by 1.75 g dm–3
Phytagel showed the highest proliferation rate, but the largest buds were observed with 1 g dm–3
Phytagel. 相似文献
7.
Ectopic expression of a tomato 9-cis-epoxycarotenoid dioxygenase gene causes over-production of abscisic acid 总被引:15,自引:0,他引:15
Thompson AJ Jackson AC Symonds RC Mulholland BJ Dadswell AR Blake PS Burbidge A Taylor IB 《The Plant journal : for cell and molecular biology》2000,23(3):363-374
The tomato mutant notabilis has a wilty phenotype as a result of abscisic acid (ABA) deficiency. The wild-type allele of notabilis, LeNCED1, encodes a putative 9-cis-epoxycarotenoid dioxygenase (NCED) with a potential regulatory role in ABA biosynthesis. We have created transgenic tobacco plants in which expression of the LeNCED1 coding region is under tetracycline-inducible control. When leaf explants from these plants were treated with tetracycline, NCED mRNA was induced and bulk leaf ABA content increased by up to 10-fold. Transgenic tomato plants were also produced containing the LeNCED1 coding region under the control of one of two strong constitutive promoters, either the doubly enhanced CaMV 35S promoter or the chimaeric 'Super-Promoter'. Many of these plants were wilty, suggesting co-suppression of endogenous gene activity; however three transformants displayed a common, heritable phenotype that could be due to enhanced ABA biosynthesis, showing increased guttation and seed dormancy. Progeny from two of these transformants were further characterized, and it was shown that they also exhibited reduced stomatal conductance, increased NCED mRNA and elevated seed ABA content. Progeny of one transformant had significantly higher bulk leaf ABA content compared to the wild type. The increased seed dormancy was reversed by addition of the carotenoid biosynthesis inhibitor norflurazon. These data provide strong evidence that NCED is indeed a key regulatory enzyme in ABA biosynthesis in leaves, and demonstrate for the first time that plant ABA content can be increased through manipulating NCED. 相似文献
8.
Yasuhito Fujita Takashi Okamoto Ryozaburo Irie 《Bioscience, biotechnology, and biochemistry》2013,77(9):2103-2105
We cloned the promoter of the 9-cis-epoxycarotenoid dioxygenase gene from Arachis hypogaea L. β-Glucuronidase (GUS) histochemical staining and GUS activity assay indicated that the activity of the promoter was exhibited predominantly in the leaves and enhanced by water and NaCl stresses, and by application of abscisic acid (ABA) and salicylic acid (SA) in transgenic Arabidopsis. Moreover, two novel ABRE-like (abscisic acid response element) elements were identified in the promoter region. 相似文献
9.
Arindam Dutta Joydeep ChakrabortyTapan K. Dutta 《Biochemical and biophysical research communications》2013
Using different maximum-likelihood models of adaptive evolution, signatures of natural selective pressure, operating across the naphthalene family of dioxygenases, were examined. A lineage- and branch-site specific combined analysis revealed that purifying selection pressure dominated the evolutionary history of the enzyme family. Specifically, episodic positive Darwinian selection pressure, affecting only a few sites in a subset of lineages, was found to be responsible for the evolution of nitroarene dioxygenases (NArDO) from naphthalene dioxygenase (NDO). Site-specific analysis confirmed the absence of diversifying selection pressure at any particular site. Different sets of positively selected residues, obtained from branch-site specific analysis, were detected for the evolution of each NArDO. They were mainly located around the active site, the catalytic pocket and their adjacent regions, when mapped onto the 3D structure of the α-subunit of NDO. The present analysis enriches the current understanding of adaptive evolution and also broadens the scope for rational alteration of substrate specificity of enzyme by directed evolution. 相似文献
10.
Li JS Han Q Fang J Rizzi M James AA Li J 《Archives of insect biochemistry and physiology》2007,64(2):74-87
Tryptophan 2,3-dioxygenase (TDO) is the first enzyme in the tryptophan oxidation pathway. It is a hemoprotein and its heme prosthetic group is present as a heme-ferric (heme-Fe(3+)) form that is not active. To be able to oxidize tryptophan, the heme-Fe(3+) form of the enzyme must be reduced to a heme-ferrous (heme-Fe(2+)) form and this study describes conditions that promote TDO activation. TDO is progressively activated upon mixing with tryptophan in a neutral buffer, which leads to an impression that tryptophan is responsible for TDO activation. Through extensive analysis of factors resulting in TDO activation during incubation with tryptophan, we conclude that tryptophan indirectly activates TDO through promoting the production of reactive oxygen species. This consideration is supported by the virtual elimination of the initial lag phase when either pre-incubated tryptophan solution was used as the substrate or a low concentration of superoxide or hydrogen peroxide was incorporated into the freshly tryptophan and TDO mixture. However, accumulation of these reactive oxygen species also leads to the inactivation of TDO, so that both TDO activation and inactivation proceed with the specific outcome depending greatly on the concentrations of superoxide and hydrogen peroxide. As a consequence, the rate of TDO catalysis varies depending upon the proportion of the active to inactive forms of the enzyme, which is in a dynamic relationship in the reaction mixture. These data provide some insight towards elucidating the molecular regulation of TDO in vivo. 相似文献