首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   104篇
  免费   3篇
  国内免费   3篇
  110篇
  2022年   1篇
  2021年   1篇
  2019年   2篇
  2018年   4篇
  2017年   3篇
  2016年   2篇
  2015年   2篇
  2014年   12篇
  2013年   6篇
  2012年   7篇
  2011年   10篇
  2010年   1篇
  2009年   6篇
  2008年   6篇
  2007年   6篇
  2006年   1篇
  2005年   6篇
  2003年   2篇
  2002年   5篇
  2001年   1篇
  2000年   1篇
  1999年   2篇
  1998年   3篇
  1997年   2篇
  1996年   3篇
  1992年   2篇
  1990年   1篇
  1989年   1篇
  1987年   1篇
  1986年   1篇
  1985年   1篇
  1984年   2篇
  1982年   3篇
  1978年   2篇
  1974年   1篇
排序方式: 共有110条查询结果,搜索用时 15 毫秒
1.
Summary We have investigated the fate of the mitochondrial genomes of cybrids derived from donor-recipient protoplast fusion between X-irradiated Raphanus sativus (cms line) and iodoacetamide-treated Brassica napus cv. Westar. Two out of ten fusion products were male-sterile with the diploid chromosome number of B. napus. The mitochondrial (mt) genomes of the cybrids and their progeny were further analyzed by DNA-DNA hybridizaion using the pea mitochondrial ATPase subunit gene (atpA) as a probe. One cybrid, 18-3, had a 3.0 kb fragment characteristic of B. napus and a 2.0 kb non-parental fragment when the BamHI-digested DNA was hybridized with the probe. In the first-backcrossed progeny of this cybrid, the hybridization pattern was not stably inherited. A 4.0 kb radish fragment, not detectable in the cybrid, appeared in one of the BC1 generation siblings, and the 2.0 kb non-parental fragment was lost in another. The hybridization patterns in BC1 progeny siblings of cybrid 12-9 were also varied. The alteration of mtDNA in the cybrid progeny continued to the BC2 generation. There was no clear evidence of a heteroplasmic state or of sub-stoichiometric molecules in the mt genome of cybrid 18-3. A possible cause of the observed alteration in the mt genome is discussed.  相似文献   
2.
The nucleotide sequence of a segment of mtDNA from Rattus norvegiens (rat) which contains the genes for tRNAile, tRNAgl and tRNAf-met has been determined. A detailed comparison has been made between this sequence and the corresponding sequences of mouse, human and bovine mtDNAs with regard to the primary and secondary structure of the tRNA genes, the regions connecting the tRNA genes, and the regions flanking the tRNA genes which code for the carboxyl terminus of URF-1 and the amino terminus of URF-2. No differences were found in the nucleotide sequences of the genes for tRNAile, tRNAgln and tRNAf-met in mtDNAs from three different female lines of rats (SASCO-1, SASCO-2 and Wild-UT) that differ by substitutions of 0.8% to 1.8% of their total nucleotides.  相似文献   
3.
4.
Polyphenism has been suggested as an accelerator for morphological evolution and speciation. In the dung beetles of the genus Onthophagus, horn expression is polyphenic: large males develop horns whereas smaller males express greatly reduced or no horns. Horn static allometries seem to diverge rapidly amongst extant taxa, a process which might trigger changes in the male genital morphology, thus possibly promoting speciation as a by‐product. It can therefore be hypothesized that interspecific distances in allometries and, possibly, in other morphological traits mirror phylogenetic distances. In this study we first assessed the phylogenetic relationships amongst three closely related taxa belonging to the so‐called ‘Onthophagus fracticornis‐similis‐opacicollis’ species‐complex by sequencing the mitochondrial gene cytochrome oxidase subunit 1 (cox1). Biomolecular results indicated three independent lineages, the closest relationships being found between Onthophagus similis and Onthophagus opacicollis. Then we assessed the extent to which divergence pattern of horn static allometries and size and shape divergence patterns of one genital (paramere) and two nongenital (head and epipharynx) structures mirrored the phylogenetic relationships. Interspecific divergence patterns of horn static allometries, paramere, and head shape were found to be congruent with the evolutionary relationships inferred from biomolecular data. Nevertheless, paramere size and epipharynx shape showed patterns not consistent with the phylogeny. Furthermore, the relative size of nongenital structures showed little interspecific divergence compared to their shapes. Our results suggest that size and shape interspecific divergence mirror phylogeny only in part; they also indicate that distinct morphological traits may differ in their tendency to evolve in concert, and that size and shape of the same trait can evolve independently across species. © 2011 The Linnean Society of London, Zoological Journal of the Linnean Society, 2011, 162 , 482–498.  相似文献   
5.
Stephanie Fanucchi 《FEBS letters》2009,583(22):3557-3562
A novel survival role of focal adhesion kinase (FAK) that involves its nuclear translocation and direct association with p53 has been demonstrated. Here we examined the relationship between the p53/FAK interaction and Ser46 phosphorylation of p53 (p-p53Ser46) in the apoptotic regulation of human esophageal squamous cell carcinoma (HOSCC) cell lines, expressing either wild type (wt) p53 or mutant (mt) p53-R175H. In contrast to the wt p53 cell lines, the mt p53-R175H cell line was resistant to staurosporine (STS)-mediated detachment and caspase-3 activation. Furthermore, despite the resistance of mt p53-R175H to Ser46 phosphorylation, both wt and mt HOSCC cells translocate FAK into the nucleus and maintain the p53/FAK interaction post STS treatment. These findings provide unique insight into how tumor cells harboring the R175H mutant may resist chemotherapeutic intervention.

Structured summary

MINT-7294020: FAK (uniprotkb:Q05397) physically interacts (MI:0915) with p53 (uniprotkb:P04637) by anti-bait coimmunoprecipitation (MI:0006)  相似文献   
6.
Sternal pores are important features for identification of male thrips, especially within the subfamily Thripinae. They vary in shape, size and distribution even between species of one genus. Their functional role is speculated to be that of sex- and/or aggregation pheromone production. Yet, sexual aggregations are not reported in Echinothrips americanus, known to have sternal pores, while we observed aggregations in Megalurothrips sjostedti, previously reported to lack them.We examined the sternal glands and pores of the thripine species E. americanus and M. sjostedti males, in comparison with those of Frankliniella occidentalis using light microscopy, as well as scanning and transmission electron microscopy. Pore plates of F. occidentalis were ellipsoid and medial on sternites III–VII, while in E. americanus they were distributed as multiple micro pore plates on sternites III–VIII. In M. sjostedti they appeared as an extremely small pore in front of the posterior margin of each of sternites IV–VII. Pore plate and pore plate area were distributed similarly on sternites III–VII in F. occidentalis. However, in E. americanus the total pore plate area increased significantly from sternites III to VIII. Ultrastructure of cells associated with sternal glands showed typical characteristics of gland cells that differ in size, shape and number. The function of sternal glands is further discussed on the basis of morphological comparisons with other thrips species.  相似文献   
7.
Molecular phylogenetic analyses using mitochondrial NADH dehydrogenase subunit 5 (ND5) gene sequences representing all 15 species and the majority of subspecies or races of theOhomopterus ground beetles from all over the Japanese archipelago have uncovered a remarkable evolutionary history. Clustering of the species in the molecular phylogenetic tree is linked to their geographic distribution and does not correlate with morphological characters. Taxonomically the same species or the members belonging to the same species-group fall out in more than two different places on the ND5 tree. Evidence has been presented against a possible participation of ancestral polymorphism and random lineage sorting or of hybrid individuals for the observed distribution of mitochondrial DNA haplotypes. The most plausible explanation of our results is that parallel evolution took place in different lineages. Most notably,O. dehaanii, O. yaconinus, andO. japonicus in a lineage reveal almost identical morphology with those of the same species (or subspecies) but belonging to the phylogenetically remote lineages.The nucleotide sequence data reported in this paper will appear in the DDBJ, EMBL, and GenBank nucleotide sequence databases with accession numbers D50711-DD-50733 and D87131-D87186.  相似文献   
8.
Summary Mesophyl protoplasts of two genotypes of cultivated tomato (Lycopersicon esculentum Mill.) and one of its wild relative species (Lycopersicon peruvianum Mill.) were fused by using electrofusion and polyethyleneglycol-induced fusion. Forty-three fertile tetraploid somatic hybrid plants, each deriving from separate calli, were recovered from both fusion procedures. Electrofusion appeared more efficient than chemical fusion for the production of somatic hybrids. These plants appeared morphologically similar, whatever the fusion procedure and tomato genotype. They had intermediate leaf, inflorescence, and flower morphology. After self-pollination, the hybrids set fruit of intermediate size and color. The hybrid nature of these plants was confirmed by isoelectric focusing of the Rubisco small subunits used as nuclear markers. L. esculentum and L. peruvianum were distinguished by means of two chloroplast markers: CF1-ATPase subunit as analyzed by isoelectro-focusing and ct DNA restriction patterns. All hybrids displayed both ct markers of only one parent with no biased transmission. Mitochondrial (mt) DNAs were prepared from flower buds by using miniaturized CsCl gradients. Preliminary analysis indicated that mt genomes from the hybrids all differed from those of both parents. mt DNA Sall restriction enzyme analysis revealed that all but two hybrids contained one novel fragment of 13.5 kb. Gene mapping experiments showed that the mt apocytochrome b and ATPase subunit 9 homologies in the somatic hybrid mt DNA resembled L. esculentum and L. peruvianum, respectively; the mt nad5 probe distinguished at least four distinct patterns in the hybrids. These results indicated that mt DNA rearrangements involving intergenomic recombinations occurred through protoplast fusion. A greater mt DNA polymorphism was induced with chemical fusion than with electrofusion.  相似文献   
9.
Zhou X  Jin P  Qin S  Chen L  Ma F 《Gene》2012,492(1):110-116
Ascaris lumbricoides and Ascaris suum are parasitic nematodes living in the small intestine of humans and pigs, and can cause the disease ascariasis. For long, there has been controversy as to whether the two ascaridoid taxa represent the same species due to their significant resemblances in morphology. However, the complete mitochondrial (mt) genome data have been lacking for A. lumbricoides in spite of human and animal health significance and socio-economic impact globally of these parasites. In the present study, we sequenced the complete mt genomes of A. lumbricoides and A. suum (China isolate), which was 14,303 bp and 14,311 bp in size, respectively. The identity of the mt genomes was 98.1% between A. lumbricoides and A. suum (China isolate), and 98.5% between A. suum (China isolate) and A. suum (USA isolate). Both genomes are circular, and consist of 36 genes, including 12 genes for proteins, 2 genes for rRNA and 22 genes for tRNA, which are consistent with that of all other species of ascaridoid studied to date. All genes are transcribed in the same direction and have a nucleotide composition high in A and T (71.7% for A. lumbricoides and 71.8% for A. suum). The AT bias had a significant effect on both the codon usage pattern and amino acid composition of proteins. Phylogenetic analyses of A. lumbricoides and A. suum using concatenated amino acid sequences of 12 protein-coding genes, with three different computational algorithms (Bayesian analysis, maximum likelihood and maximum parsimony) all clustered in a clade with high statistical support, indicating that A. lumbricoides and A. suum was very closely related. These mt genome data and the results provide some additional genetic evidence that A. lumbricoides and A. suum may represent the same species. The mt genome data presented in this study are also useful novel markers for studying the molecular epidemiology and population genetics of Ascaris.  相似文献   
10.
Shao R  Barker SC 《Gene》2011,473(1):36-43
The mitochondrial (mt) genome of the human body louse, Pediculus humanus, consists of 18 minichromosomes. Each minichromosome is 3 to 4 kb long and has 1 to 3 genes. There is unequivocal evidence for recombination between different mt minichromosomes in P. humanus. It is not known, however, how these minichromosomes recombine. Here, we report the discovery of eight chimeric mt minichromosomes in P. humanus. We classify these chimeric mt minichromosomes into two groups: Group I and Group II. Group I chimeric minichromosomes contain parts of two different protein-coding genes that are from different minichromosomes. The two parts of protein-coding genes in each Group I chimeric minichromosome are joined at a microhomologous nucleotide sequence; microhomologous nucleotide sequences are hallmarks of non-homologous recombination. Group II chimeric minichromosomes contain all of the genes and the non-coding regions of two different minichromosomes. The conserved sequence blocks in the non-coding regions of Group II chimeric minichromosomes resemble the "recombination repeats" in the non-coding regions of the mt genomes of higher plants. These repeats are essential to homologous recombination in higher plants. Our analyses of the nucleotide sequences of chimeric mt minichromosomes indicate both homologous and non-homologous recombination between minichromosomes in the mitochondria of the human body louse.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号