首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5209篇
  免费   459篇
  国内免费   657篇
  2024年   32篇
  2023年   183篇
  2022年   210篇
  2021年   271篇
  2020年   241篇
  2019年   260篇
  2018年   246篇
  2017年   201篇
  2016年   224篇
  2015年   217篇
  2014年   247篇
  2013年   387篇
  2012年   183篇
  2011年   224篇
  2010年   237篇
  2009年   235篇
  2008年   223篇
  2007年   243篇
  2006年   225篇
  2005年   230篇
  2004年   187篇
  2003年   174篇
  2002年   149篇
  2001年   111篇
  2000年   109篇
  1999年   97篇
  1998年   83篇
  1997年   76篇
  1996年   71篇
  1995年   74篇
  1994年   72篇
  1993年   51篇
  1992年   40篇
  1991年   53篇
  1990年   35篇
  1989年   38篇
  1988年   36篇
  1987年   24篇
  1986年   22篇
  1985年   28篇
  1984年   34篇
  1983年   30篇
  1982年   40篇
  1981年   32篇
  1980年   34篇
  1979年   28篇
  1978年   19篇
  1977年   16篇
  1976年   15篇
  1975年   11篇
排序方式: 共有6325条查询结果,搜索用时 363 毫秒
1.
The ability to metabolically label proteins with 35S-methionine is critical for the analysis of protein synthesis and turnover. Despite the importance of this approach, however, efficient labeling of proteins in vivo is often limited by a low number of available methionine residues, or by deleterious side-effects associated with protein overexpression. To overcome these limitations, we have created a methionine-rich variant of the widely used HA tag, called HAM, for use with ectopically expressed proteins. Here we describe the development of a series of vectors, and corresponding antisera, for the expression and detection of HAM-tagged proteins in mammalian cells. We show that the HAM tag dramatically improves the sensitivity of 35S-methionine labeling, and permits the analysis of Myc oncoprotein turnover even when HAM-tagged Myc is expressed at levels comparable to that of the endogenous protein. Because of the improved sensitivity provided by the HAM tag, the vectors and antisera described here should be useful for the analysis of protein synthesis and destruction at physiological levels of protein expression.  相似文献   
2.
1. Because L-asparagine augments insulin release evoked by L-leucine, the metabolism of these two amino acids was investigated in rat pancreatic islets. 2. L-Leucine inhibited the uptake and deamidation of L-asparagine, but failed to exert any obvious primary effect upon the further catabolism of aspartate derived from exogenous asparagine. 3. L-Asparagine augmented the oxidation of L-leucine, and effect possibly attributable to activaion of 2-ketoisocaproate dehydrogenase. 4. The association of L-asparagine and L-leucine exerted a sparing action on the utilization of endogenous amino acids, so that the integrated rate of nutrients oxidation was virtually identical in the sole presence of L-leucine and simultaneous presence of L-asparagine and L-leucine, respectively. 5. It is proposed that the enhancing action of L-asparagine upon insulin release evoked by L-leucine is attributable to an increased generation rate of cytosolic NADPH rather than any increase in nutrients oxidation.  相似文献   
3.
Andreas Barth 《BBA》2007,1767(9):1073-1101
This review discusses the application of infrared spectroscopy to the study of proteins. The focus is on the mid-infrared spectral region and the study of protein reactions by reaction-induced infrared difference spectroscopy.  相似文献   
4.
Metabolism is recognized as an important driver of cancer progression and other complex diseases, but global metabolite profiling remains a challenge. Protein expression profiling is often a poor proxy since existing pathway enrichment models provide an incomplete mapping between the proteome and metabolism. To overcome these gaps, we introduce multiomic metabolic enrichment network analysis (MOMENTA), an integrative multiomic data analysis framework for more accurately deducing metabolic pathway changes from proteomics data alone in a gene set analysis context by leveraging protein interaction networks to extend annotated metabolic models. We apply MOMENTA to proteomic data from diverse cancer cell lines and human tumors to demonstrate its utility at revealing variation in metabolic pathway activity across cancer types, which we verify using independent metabolomics measurements. The novel metabolic networks we uncover in breast cancer and other tumors are linked to clinical outcomes, underscoring the pathophysiological relevance of the findings.  相似文献   
5.
Age impacts alloimmunity. Effects of aging on T‐cell metabolism and the potential to interfere with immunosuppressants have not been explored yet. Here, we dissected metabolic pathways of CD4+ and CD8+ T cells in aging and offer novel immunosuppressive targets. Upon activation, CD4+ T cells from old mice failed to exhibit adequate metabolic reprogramming resulting into compromised metabolic pathways, including oxidative phosphorylation (OXPHOS) and glycolysis. Comparable results were also observed in elderly human patients. Although glutaminolysis remained the dominant and age‐independent source of mitochondria for activated CD4+ T cells, old but not young CD4+ T cells relied heavily on glutaminolysis. Treating young and old murine and human CD4+ T cells with 6‐diazo‐5‐oxo‐l‐norleucine (DON), a glutaminolysis inhibitor resulted in significantly reduced IFN‐γ production and compromised proliferative capacities specifically of old CD4+ T cells. Of translational relevance, old and young mice that had been transplanted with fully mismatched skin grafts and treated with DON demonstrated dampened Th1‐ and Th17‐driven alloimmune responses. Moreover, DON diminished cytokine production and proliferation of old CD4+ T cells in vivo leading to a significantly prolonged allograft survival specifically in old recipients. Graft prolongation in young animals, in contrast, was only achieved when DON was applied in combination with an inhibition of glycolysis (2‐deoxy‐d‐glucose, 2‐DG) and OXPHOS (metformin), two alternative metabolic pathways. Notably, metabolic treatment had not been linked to toxicities. Remarkably, immunosuppressive capacities of DON were specific to CD4+ T cells as adoptively transferred young CD4+ T cells prevented immunosuppressive capacities of DON on allograft survival in old recipients. Depletion of CD8+ T cells did not alter transplant outcomes in either young or old recipients. Taken together, our data introduce an age‐specific metabolic reprogramming of CD4+ T cells. Targeting those pathways offers novel and age‐specific approaches for immunosuppression.  相似文献   
6.
《Developmental cell》2022,57(11):1383-1399.e7
  1. Download : Download high-res image (247KB)
  2. Download : Download full-size image
  相似文献   
7.
8.
《Developmental cell》2021,56(16):2329-2347.e6
  1. Download : Download high-res image (154KB)
  2. Download : Download full-size image
  相似文献   
9.
1. Metabolism is the fundamental process that powers life. Understanding what drives metabolism is therefore critical to our understanding of the ecology and behaviour of organisms in nature. 2. Metabolic rate generally scales with body size according to a power law. However, considerable unexplained variation in metabolic rate remains after accounting for body mass with scaling functions. 3. We measured resting metabolic rates (oxygen consumption) of 227 field‐caught wolf spiders. Then, we tested for effects of body mass, species, and body condition on metabolic rate. 4. Metabolic rate scales with body mass to the 0.85 power in these wolf spiders, and there are metabolic rate differences between species. After accounting for these factors, residual variation in metabolic rate is related to spider body condition (abdomen:cephalothorax ratio). Spiders with better body condition consume more oxygen. 5. These results indicate that recent foraging history is an important determinant of metabolic rate, suggesting that although body mass and taxonomic identity are important, other factors can provide helpful insights into metabolic rate variation in ecological communities.  相似文献   
10.
Summary 1. Indirect and direct twitch (0.1-Hz) stimulation of the rat phrenic nerve-diaphragm disclosed that the inhibitory effect of HgCl2, 3.7 × 10–5 M, on the neuromuscular transmission and in the muscle cell, was accelerated by 10-sec periods of 50-Hz tetanic stimulation every 10 min. This activity-dependent enhancement suggested an inhibitory mechanism of HgCl2 related to the development of fatigue, like membrane depolarization or decreased excitability, decreased availability of transmitter, or interference with the factors controlling excitation-secretion coupling of the nerve terminal, i.e. (Ca2+)0 or (Ca2+)i, and excitation-contraction coupling in the muscle cell, i.e., (Ca2+)i.2. During both indirect and direct stimulation, HgCl2-induced inhibition was enhanced markedly by pretreatment with caffeine, which releases Ca2+ from endoplasmic and sarcoplasmic reticulum in the nerve terminal and muscle cell, respectively. This caffeine-induced enhancement was completely antagonized by dantrolene, which inhibits the caffeine-induced release. However, dantrolene alone did not antagonize the HgCl2-induced inhibition.3. Since caffeine depletes the intracellular Ca2+ stores of the smooth endoplasmic reticulum, HgCl2 probably inhibits by binding to SH groups of transport proteins conveying the messenger function of (Ca2+)i. In the muscle cell this leads to inhibition of contraction. In the nerve terminal, an additional enhancement of the HgCl2-induced inhibition, by inhibiting reuptake of choline by TEA and tetanic stimulation, suggested that HgCl2 inhibited a (Ca2+)i signal necessary for this limiting factor in resynthesis of acetylcholine.4. The (Ca2+)0 signal necessary for stimulus-induced release of acetylcholine was not affected by HgCl2. Hyperpolarization in K+-free solution antagonized the inhibitory effect of HgCl2 at indirect stimulation, and Ca2+-free solution enhanced the inhibitory effect at direct stimulation. K+ depolarization, membrane electric field increase with high Ca2+, membrane stabilization with lidocaine, and half-threshold stimulation, did not change the inhibitory effect of HgCl CH3HgCl, 1.85 × 10–5 M, disclosed a synergistic interaction with caffeine during direct, but not during indirect, stimulation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号