首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   52篇
  免费   5篇
  国内免费   8篇
  65篇
  2023年   3篇
  2022年   1篇
  2020年   2篇
  2019年   1篇
  2018年   3篇
  2017年   5篇
  2016年   2篇
  2015年   4篇
  2014年   4篇
  2013年   3篇
  2012年   4篇
  2011年   1篇
  2010年   1篇
  2009年   1篇
  2007年   4篇
  2006年   1篇
  2005年   3篇
  2004年   4篇
  2003年   2篇
  2002年   3篇
  2000年   1篇
  1999年   2篇
  1998年   1篇
  1997年   2篇
  1996年   2篇
  1995年   2篇
  1993年   1篇
  1987年   1篇
  1983年   1篇
排序方式: 共有65条查询结果,搜索用时 0 毫秒
1.
Plants have evolved complex signaling pathways to coordinate responses to developmental and environmental Information. The oxylipin pathway Is one pivotal lipid-based signaling network, composed of several competing branch pathways, that determines the plant's ability to adapt to various stimuli. Activation of the oxyllpln pathway Induces the de novo synthesis of biologically active metabolltes called "oxyllplns". The relative levels of these metabolltes are a distinct indicator of each plant species and determine the ability of plants to adapt to different stimuli. The two major branches of the oxyllpln pathway, allene oxide synthase (AOS) and hydroperoxlde lyase (HPL) are responsible for production of the signaling compounds, jasmonates and aldehydes respectively. Here, we compare and contrast the regulation of AOS and HPL branch pathways In rice and Arabidopsis as model monocotyledonous and dicotyledonous systems. These analyses provide new Insights Into the evolution of JAs and aldehydes signaling pathways, and the complex network of processes responsible for stress adaptations In monocots and dicots.  相似文献   
2.
A hypothesis of existence of a general adaptation syndrome (GAS), in which different types of stress evoke similar coping mechanisms, resulting in adaptations, is tested for plants. As stress coping mechanisms, oxy-free radical scavengers and antioxidants, osmoregulation, the role of abscisic acid, jasmonates, nitric oxide, synthesis of heat shock proteins and phytochelatins as heavy metal detoxifiers are discussed. The authors would like to thank the Netherlands Organization for Scientific Research (NWO) which enabled their collaboration and the formulation of some of the concepts here presented.  相似文献   
3.
4.
Suspension cultures of Taxus chinensis were used as a model plant cell system to evaluate novel synthetic jasmonates as elicitors for stimulating the biosynthesis of secondary metabolites. Significant increases in accumulation of taxuyunnanine C (Tc) were observed in the presence of newly synthesized 2-hydroxyethyl jasmonate (HEJA) and trifluoroethyl jasmonate (TFEJA) without their inhibition on cell growth. Addition of 100 microM HEJA or TFEJA on day 7 led to a high Tc content of 44.3 +/- 1.1mg/g or 39.7 +/- 1.1 mg/g (at day 21), while the Tc content was 14.0 +/- 0.1 mg/g and 32.4 +/- 1.6 mg/g for the control and that with addition of 100 microM methyl jasmonate (MJA), respectively. The superior stimulating ability of HEJA and TFEJA over MJA, which was generally considered as the best chemical for eliciting taxoid biosynthesis, suggests that the novel jasmonate analogues may have great potential in application to other cell culture systems for effcient elicitation of plant secondary metabolites.  相似文献   
5.
The glucosinolate content of leaves, stems and roots of a range of Chinese oilseed rape (Brassica napus L.) breeding lines was analysed. Total content and spectrum of individual glucosinolates varied widely, and there was no correlation between seed and vegetative tissue glucosinolate content. Lines with low seed glucosinolates (00) did not necessarily have low glucosinolate content in vegetative tissues; nor did high seed glucosinolate lines always have high vegetative tissue content. There was no correlation between the glucosinolate content of leaf, stem, and root in any given line. It appears that glucosinolate synthesis and accumulation is under tissue-specific control, and the mutation which blocks accumulation of glucosinolates in seeds does not influence other tissues. The responses of these lines to elicitors was also examined. Methyl jasmonate and salicylic acid treatments produced increases in leaf indolyl and aromatic glucosinolates respectively. However, the extent of such increases differed widely between the lines, and there were other, less consistent, effects on other classes of glucosinolate. There seems to be greater variation in glucosinolate accumulation in rape than has previously been reported, and the lines described here have considerable potential for evaluating the effects of manipulating glucosinolate profiles on pest and disease interactions.  相似文献   
6.
Background and Aims Vitamin E helps to control the cellular redox state by reacting with singlet oxygen and preventing the propagation of lipid peroxidation in thylakoid membranes. Both plant ageing and phosphorus deficiency can trigger accumulation of reactive oxygen species, leading to damage to the photosynthetic apparatus. This study investigates how phosphorus availability and vitamin E interact in the control of plant longevity in the short-lived annual Arabidopsis thaliana.Methods The responses of tocopherol cyclase (VTE1)- and γ-tocopherol methyltransferase (VTE4)-null mutants to various levels of phosphorus availability was compared with that of wild-type plants. Longevity (time from germination to rosette death) and the time taken to pass through different developmental stages were determined, and measurements were taken of photosynthetic efficiency, pigment concentration, lipid peroxidation, vitamin E content and jasmonate content.Key Results The vte1 mutant showed accelerated senescence under control conditions, excess phosphorus and mild phosphorus deficiency, suggesting a delaying, protective effect of α-tocopherol during plant senescence. However, under severe phosphorus deficiency the lack of α-tocopherol paradoxically increased longevity in the vte1 mutant, while senescence was accelerated in wild-type plants. Reduced photoprotection in vitamin E-deficient mutants led to increased levels of defence chemicals (as indicated by jasmonate levels) under severe phosphorus starvation in the vte4 mutant and under excess phosphorus and mild phosphorus starvation in the vte1 mutant, indicating a trade-off between the capacity for photoprotection and the activation of chemical defences (jasmonate accumulation).Conclusions Vitamin E increases plant longevity under control conditions and mild phosphorus starvation, but accelerates senescence under severe phosphorus limitation. Complex interactions are revealed between phosphorus availability, vitamin E and the potential to synthesize jasmonates, suggesting a trade-off between photoprotection and the activation of chemical defences in the plants.  相似文献   
7.
Herbivory‐induced changes in photosynthesis have been documented in many plant species; however, the complexity of photosynthetic regulation and analysis has thwarted progress in understanding the mechanism involved, particularly those elicited by herbivore‐specific elicitors. Here, we analysed the early photosynthetic gas exchange responses in Nicotiana attenuata plants after wounding and elicitation with Manduca sexta oral secretions and the pathways regulating these responses. Elicitation with M. sexta oral secretions rapidly decreased photosynthetic carbon assimilation (AC) in treated and systemic (untreated, vascularly connected) leaves, which were associated with changes in stomatal conductance, rather than with changes in Rubisco activity and 1‐5 ribulose‐1,5‐bisphosphate turnover. Phytohormone profiling and gas exchange analysis of oral secretion‐elicited transgenic plants altered in phytohormone regulation, biosynthesis and perception, combined with micrografting techniques, revealed that the local photosynthetic responses were mediated by 12‐oxo‐phytodienoic acid, while the systemic responses involved interactions among jasmonates, cytokinins and abscisic acid signalling mediated by mitogen‐activated protein kinase 4. The analysis also revealed a role for cytokinins interacting with mitogen‐activated protein kinase 4 in CO2‐mediated stomatal regulation. Hence, oral secretions, while eliciting jasmonic acid‐mediated defence responses, also elicit 12‐oxo‐phytodienoic acid‐mediated changes in stomatal conductance and AC, an observation illustrating the complexity and economy of the signalling that regulates defence and carbon assimilation pathways in response to herbivore attack.  相似文献   
8.
该研究以草莓‘红颜’(Fragaria ananassa Duch.‘Benihoppe’)为试材,于草莓花后15d采用注射法开始注射茉莉酸甲酯(MeJA,浓度为400μmol/L),分析MeJA对草莓果实发育进程的影响及其相关基因的表达,以揭示MeJA在草莓果实发育和成熟调控中的作用及其分子机理。结果表明:(1)MeJA处理草莓果实后,果实变红成熟期比对照显著提前,平均提前4d;(2)随着草莓果实发育成熟,MeJA处理的茉莉酸(JA)合成基因FaOPDA1的表达量迅速升高;(3)FaOPDA1基因在草莓果实中的超表达能够促进草莓果实提前成熟3~5d,且FaOPDA1基因的超表达能够诱导与草莓果实成熟相关的一系列基因的表达量升高,从而促进草莓果实提前成熟。  相似文献   
9.
10.
A crucial step in the biosynthesis of jasmonic acid (JA) is the formation of its correct stereoisomeric precursor, cis(+)12-oxophytodienoic acid (OPDA). This step is catalysed by allene oxide cyclase (AOC), which has been recently cloned from tomato. In stems, young leaves and young flowers, AOC mRNA accumulates to a low level, contrasting with a high accumulation in flower buds, flower stalks and roots. The high levels of AOC mRNA and AOC protein in distinct flower organs correlate with high AOC activity, and with elevated levels of JA, OPDA and JA isoleucine conjugate. These compounds accumulate in flowers to levels of about 20 nmol g-1 fresh weight, which is two orders of magnitude higher than in leaves. In pistils, the level of OPDA is much higher than that of JA, whereas in flower stalks, the level of JA exceeds that of OPDA. In other flower tissues, the ratios among JA, OPDA and JA isoleucine conjugate differ remarkably, suggesting a tissue-specific oxylipin signature. Immunocytochemical analysis revealed the specific occurrence of the AOC protein in ovules, the transmission tissue of the style and in vascular bundles of receptacles, flower stalks, stems, petioles and roots. Based on the tissue-specific AOC expression and formation of JA, OPDA and JA amino acid conjugates, a possible role for these compounds in flower development is discussed in terms of their effect on sink-source relationships and plant defence reactions. Furthermore, the AOC expression in vascular bundles might play a role in the systemin-mediated wound response of tomato.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号