排序方式: 共有3条查询结果,搜索用时 0 毫秒
1
1.
Variation in the C18OO content of atmospheric CO2 (delta18Oa) can be used to distinguish photosynthesis from soil respiration, which is based on carbonic anhydrase (CA)-catalyzed 18O exchange between CO2 and 18O-enriched leaf water (delta18Ow). Here we tested the hypothesis that mean leaf delta18Ow and assimilation rates can be used to estimate whole-leaf C18OO flux (isoflux), ignoring intraleaf variations in CA activity and gas exchange parameters. We observed variations in CA activity along the leaf (> 30% decline from the leaf center toward the leaf ends), which were only partially correlated to those in delta18Ow (7 to 21 per thousand), delta18O and delta13C of leaf organic matter (25 to 30 per thousand and -12.8 to -13.2 per thousand, respectively), and substomatal CO2 concentrations (intercellular CO2 concentrations, c(i), at the leaf center were approximately 40% of those at the leaf tip). The combined effect of these variations produced a leaf-integrated isoflux that was different from that predicted based on bulk leaf values. However, because of canceling effects among the influencing parameters, isoflux overestimations were only approximately 10%. Conversely, use of measured parameters from a leaf segment could produce large errors in predicting leaf-integrated C18OO fluxes. 相似文献
2.
Changes in the 2H and 18O of atmospheric water vapour provide information for integrating aspects of gas exchange within forest canopies. In this study, we show that diurnal fluctuations in the oxygen isotope ratio (δ18O) as high as 4‰ were observed for water vapour (δ18Ovp) above and within an old‐growth coniferous forest in the Pacific Northwest region of the United States. Values of δ18Ovp decreased in the morning, reached a minimum at midday, and recovered to early‐morning values in the late afternoon, creating a nearly symmetrical diurnal pattern for two consecutive summer days. A mass balance budget was derived and assessed for the 18O of canopy water vapour over a 2‐d period by considering the 18O‐isoflux of canopy transpiration, soil evaporation and the air entering the canopy column. The budget was used to address two questions: (1) do δ18O values of canopy water vapour reflect the biospheric influence, or are such signals swamped by atmospheric mixing? and (2) what mechanisms drive temporal variations of δ18Ovp? Model calculations show that the entry of air into the canopy column resulted in an isotopically depleted 18O‐isoflux in the morning of day 1, causing values of δ18Ovp to decrease. An isotopically enriched 18O‐isoflux resulting from transpiration then offset this decreased δ18Ovp later during the day. Contributions of 18O‐isoflux from soil evaporation were relatively small on day 1 but were more significant on day 2, despite the small H216O fluxes. From measurements of leaf water volume and sapflux, we determined the turnover time of leaf water in the needles of Douglas‐fir trees as ≈ 11 h at midday. Such an extended turnover time suggests that transpiration may not have occurred at the commonly assumed isotopic steady state. We tested a non‐steady state model for predicting δ18O of leaf water. Our model calculations show that assuming isotopic steady state increased isoflux of transpiration. The impact of this increase on the modelled δ 18Ovp was clearly detectable, suggesting the importance of considering isotopic non‐steady state of transpiration in studies of forest 18O water balance. 相似文献
3.
加拿大温带落叶林生态系统氢氧同位素组成研究 总被引:3,自引:0,他引:3
陆地生态系统氢氧稳定同位素能为陆地与大气的水分交换和陆地生态系统水文循环研究提供独特的示踪信息。基于2009年生长季加拿大落叶林生态系统氢氧稳定同位素组成及环境要素的观测数据,分析了生态系统不同来源液态水和大气水汽同位素组成的时空变化特征,分析了生态系统蒸散与土壤蒸发的同位素组成和同位素通量(Isoflux)的变化特征,并讨论了主要的环境控制因素。结果表明,生态系统中不同来源液态水的同位素组成差别较大,与枝条水和土壤水相比,叶片水同位素组成最富集且变化幅度最大。大气水汽H_2~(18)O和HDO同位素组成随着高度升高而降低,水汽同位素值日变化呈"W"型分布,上午水汽同位素值降低,正午有一定的起伏,傍晚回升。水汽同位素组成与大气湿度有显著的相关性,大气水汽过量氘下午均值与表面相对湿度和水汽混合比的相关系数分别为-0.61(P0.01)和-0.57(P0.01)。受蒸腾速率和叶水同位素富集程度的共同作用,白天蒸散H_2~(18)O组成在正午和傍晚高,下午低。Isoflux的计算结果表明白天下垫面蒸散有助于大气水汽同位素富集,蒸散同位素通量最高可达147.5 mmol m~(-2)s~(-1)‰。本研究结果能为同位素水文模型提供数据支持和理论参考。 相似文献
1