全文获取类型
收费全文 | 103篇 |
免费 | 4篇 |
国内免费 | 4篇 |
专业分类
111篇 |
出版年
2023年 | 4篇 |
2022年 | 6篇 |
2021年 | 2篇 |
2020年 | 1篇 |
2019年 | 1篇 |
2018年 | 1篇 |
2016年 | 2篇 |
2015年 | 3篇 |
2014年 | 4篇 |
2013年 | 3篇 |
2012年 | 3篇 |
2011年 | 8篇 |
2010年 | 6篇 |
2009年 | 4篇 |
2008年 | 8篇 |
2007年 | 7篇 |
2006年 | 2篇 |
2005年 | 4篇 |
2004年 | 1篇 |
2003年 | 4篇 |
2002年 | 4篇 |
2001年 | 4篇 |
2000年 | 1篇 |
1999年 | 4篇 |
1998年 | 2篇 |
1996年 | 6篇 |
1995年 | 1篇 |
1994年 | 4篇 |
1990年 | 1篇 |
1989年 | 1篇 |
1988年 | 1篇 |
1987年 | 2篇 |
1986年 | 1篇 |
1984年 | 3篇 |
1977年 | 1篇 |
1974年 | 1篇 |
排序方式: 共有111条查询结果,搜索用时 15 毫秒
1.
High-temperature gas chromatography and gas chromatography-inass spectrometry for the analyses of oligosaccharides derived
from glycoproteins or glycosphingolipids has been developed. Pcrmethylatcd oligosaccharides with up to about 12 sugar residues
and masses up to 2500 Daltons can be analyzed. This approach is discussed and exemplified. 相似文献
2.
The anomeric structure of glycosphingolipids significantly influences their activity to stimulate natural killer T cells. In this study the chemical structure of the galacturonosyl-ceramide in Sphingomonas yanoikuyae, designated GSL-1'sy, was re-examined to prove the anomeric structure of the Dgalacturonic acid (GalA) in the lipid, which was reported as beta-configuration by Naka et al., but was suggested as alpha-configuration in our preliminary study. GSL-1'sy was purified from the bacterial cells with the same procedure as Naka et al. The 1H-NMR analysis of GSL-1'sy revealed that the coupling constant of the anomeric proton of GalA was 3.0 Hz, indicating that GalA in GSL-1'sy is alpha-anomer, the configuration active for the stimulation of natural killer T cells. 相似文献
3.
The carbohydrate binding preferences of the Galalpha3Galbeta4 GlcNAc-binding lectins from Marasmius oreades and Euonymus europaeus were examined by binding to glycosphingolipids on thin-layer chromatograms and in microtiter wells. The M. oreades lectin bound to Galalpha3-terminated glycosphingolipids with a preference for type 2 chains. The B6 type 2 glycosphingolipid (Galalpha3[Fucalpha2]Galbeta4GlcNAcbeta3Galbeta4Glcbeta1Cer) was preferred over the B5 glycosphingolipid (Galalpha3Galbeta4GlcNAcbeta3Galbeta4Glcbeta1Cer), suggesting that the alpha2-linked Fuc is accommodated in the carbohydrate binding site, providing additional interactions. The lectin from E. europaeus had broader binding specificity. The B6 type 2 glycosphingolipid was the best ligand also for this lectin, but binding to the B6 type 1 glycosphingolipid (Galalpha3[Fucalpha2]Galbeta3GlcNAcbeta3Galbeta4Glcbeta1Cer) was also obtained. Furthermore, the H5 type 2 glycosphingolipid (Fucalpha2Galbeta4GlcNAcbeta3Galbeta4Glcbeta1Cer), devoid of a terminal alpha3-linked Gal, was preferred over the the B5 glycosphingolipid, demonstrating a significant contribution to the binding affinity by the alpha2-linked Fuc. The more tolerant nature of the lectin from E. europaeus was also demonstrated by the binding of this lectin, but not the M. oreades lectin, to the x2 glycosphingolipid (GalNAcbeta3Galbeta4GlcNAcbeta3Galbeta4Glcbeta1Cer) and GlcNAcbeta3Galbeta4GlcNAcbeta3Galbeta4Glcbeta1Cer. The A6 type 2 glycosphingolipid (GalNAcalpha3[Fucalpha2]Galbeta4GlcNAcbeta3Galbeta4Glcbeta1Cer) and GalNAcalpha3Galbeta4GlcNAcbeta3Galbeta4Glcbeta1-Cer were not recognized by the lectins despite the interaction with B6 type 2 glycosphingolipid and the B5 glycosphingolipid. These observations are explained by the absolute requirement of a free hydroxyl in the 2-position of Galalpha3 and that the E. europaea lectin can accommodate a GlcNAc acetamido moiety close to this position by reorienting the terminal sugar, whereas the M. oreades lectin cannot. 相似文献
4.
H Higashi M Naiki S Matuo K Okouchi 《Biochemical and biophysical research communications》1977,79(2):388-395
Antigen of “serum-sickness” type of heterophile antibodies in pathologic human sera was purified from equine and bovine erythrocyte stroma. The chemical nature of this antigen was glycosphingolipids with N-glycolylneuraminic acid. The antigen of equine erythrocytes was identified as hematoside with N-glycolylneuraminic acid, GlNeu(α, 2–3)Gal(β, 1–4)Glc(β,1-1) ceramide and the antigen of bovine erythrocytes was N-glycolylneuraminyl-paragloboside, GlNeu (α,2–3)Gal(β,1–4)GlcNAc(β,1–3)Gal(β,1–4)Glc(β,1-1) ceramide. The results indicate that “serum-sickness” antibodies react with a common disaccharide moiety of non-reducing end of the both glycosphingolipids. 相似文献
5.
Matts Nylund 《生物化学与生物物理学报:生物膜》2005,1669(2):87-94
The mammalian glycolipid transfer protein, GLTP, catalyzes the transfer in vitro of glycolipids between membranes. In this study we have examined on one hand the effect of the variations in the donor vesicle composition and on the other hand the effects of variations in the acceptor vesicle composition on the GLTP-catalyzed transfer kinetics of galactosylceramide between bilayer vesicles. For this purpose a resonance energy transfer assay was used, the energy donor being anthrylvinyl-galactosylceramide and the energy acceptor DiO-C16. First, we show that the transfer of anthrylvinyl-galactosylceramide from palmitoyl-oleoyl-phosphatidylcholine donor vesicles was faster than from dipalmitoyl-phosphatidylcholine vesicles, and that there is no transfer from palmitoyl-sphingomyelin vesicles regardless of the cholesterol amount. In this setup the acceptor vesicles were always 100% palmitoyl-oleoyl-phosphatidylcholine. We also showed that the transfer in general is faster from small highly curved vesicles compared to that from larger vesicles. Secondly, by varying the acceptor vesicle composition we showed that the transfer is faster to mixtures of sphingomyelin and cholesterol compared to mixtures of phosphatidylcholines and cholesterol. Based on these experiments we conclude that the GLTP mediated transfer of anthrylvinyl-galactosylceramide is sensitive to the matrix lipid composition and membrane bending. We postulate that a tightly packed membrane environment is most effective in preventing GLTP from accessing its substrates, and cholesterol is not required to protect the glycosphingolipid in the membrane from being transferred by GLTP. On the other hand GLTP can more easily transfer glycolipids to ‘lipid raft’ like membranes, suggesting that the protein could be involved in raft assembly. 相似文献
6.
Basu M Kelly P O'Donnell P Miguel M Bradley M Sonnino S Banerjee S Basu S 《Bioscience reports》1999,19(5):449-460
Ceramide glycanase (CGase) activities have been detected in different human tumor cells (colon, carcinoma Colo-205; neuroblastoma, IMR-32; breast cancer lines, SKBr3 and MCF7). However, the level of enzymatic activity is lower in these cells compared to that present in other mammalian tissues reported before (Basu, M., Kelly, P., Girzadas, M. A., Li, Z., and Basu, S. Methods Enzymol. (in press)). The majority of CGase activity was found in the 100,000g soluble supernatant fraction isolated from all these cell lines and tissues. Using the soluble enzyme, the requirement for optimum CGase activity was found to be consistent with previous observations found for rat and rabbit tissues (Basu, M., Dastgheib, S., Girzadas, M. A., O'Donnell, P. H., Westervelt, C. W., Li, Z., Inokuchi, J. I., and Basu, S. (1998) Acta Pol. Biochim. 42:327). The CGase activities from both Colo-205 and IMR-32 cells are optimum at a protein to detergent ratio of one. All the mammalian CGases, including human cancer cells, show an optimum pH between 5.5 and 5.8 in sodium acetate buffer. The CGase activities from cancer cells are found to be cation-independent; however, mercury, zinc, and copper ions seem to inhibit the enzyme activity substantially in both tumor cells lines. The mercury ion inhibition of CGase activities from all different sources indicates a possible structural homology in the CGase proteins.Radiolabeled substrates, labeled at the sphingosine double bond or at the 3-position of sphingosine without modifying double bond of sphingosine were used in this investigation. Both were active substrates with all enzyme preparations isolated from different cancer cells (apparent Km, 500 M for nLcOse5[3H-DT]Cer and 350 M for GgOse4[sph-3-3H]Cer with Colo-205 enzyme). Structural analogues of ceramide and sphingosine (L-PPMP, L-PDMP, alkylamines, and Tamoxifen) inhibited cancer cell CGase activities in vitro. 相似文献
7.
Sulfatide is associated with insulin granules and located to microdomains of a cultured beta cell line 总被引:1,自引:0,他引:1
Blomqvist M Osterbye T Månsson JE Horn T Buschard K Fredman P 《Glycoconjugate journal》2002,19(6):403-413
Previous studies using pancreas from various mammals and freshly isolated islets from rat pancreas have provided evidence supporting possible involvement of the glycosphingolipid sulfatide in insulin processing and secretion. In this study, sulfatide expression and metabolism in the beta cell line RINr1046-38 (RIN-38), commonly used as a model for beta cell functional studies, were investigated and compared with previous findings from freshly isolated islets. RIN-38 cells expressed similar amounts (2.7 +/- 1.1 nmol/mg protein, n = 19) of sulfatide as isolated rat islets and also followed the same metabolic pathway, mainly through recycling. Moreover, in agreement with findings in isolated islets, the major species of sulfatide isolated from RIN-38 cells contained C16:0 and C24:0 fatty acids. By applying subcellular isolations and electron microscopy and immunocytochemistry techniques, sulfatide was shown to be located to the secretory granules, the plasma membrane and enriched in detergent insoluble microdomains. In the electron microscopy studies, Sulph I staining was also associated with mitochondria and villi structures. In conclusion, RIN-38 cells might be an appropriate model, as a complement to isolated islets where the amount of material often limits the experiments, to further explore the role of sulfatide in insulin secretion and signal transduction of beta cells. 相似文献
8.
9.
Although detergents are often essential in protocols, they are usually incompatible with further biochemical analysis. There are several methods for detergent removal, but the procedures are complicated or suffer from sample loss. Here, we describe a convenient and rapid method for detergent removal from sialic acid-containing glycosphingolipids (gangliosides) and neutral glycolipids in detergent-resistant membrane (DRM) microdomain. It is based on selective detergent extraction, in which the sample is dried on a glass tube, followed by washing with organic solvent. We investigated 18 organic solvents and used high performance thin-layer chromatography (HPTLC) and matrix-assisted laser desorption/ionization quadrupole ion trap time-of-flight mass spectrometry (MALDI-QIT-TOF MS) to confirm that dichloroethane (DCE) was the most suitable solvent and completely removed the nonionic detergent Triton X-100. Furthermore, DCE extraction effectively removed interference caused by other nonionic, zwitterionic, or ionic detergents in MALDI-QIT-TOF MS analysis. 相似文献
10.
Hada N Shida Y Shimamura H Sonoda Y Kasahara T Sugita M Takeda T 《Carbohydrate research》2008,343(13):2221-2228
Two types of amphoteric glycosphingolipid found in the earthworm Pheretima hilgendorfi, PC(-->6)-beta-d-Galp-(1-->6)-beta-d-Galp-(1-->1)Cer (1) and PC(-->6)-beta-d-Galp-(1-->6)-beta-d-Galp-(1-->6)-beta-d-Galp-(1-->1)Cer (2), and their derivatives (4, 5) were synthesized. These were examined for their ability to enhance production of interleukin-8 (IL-8), a potent inflammatory cytokine involved in neutrophil chemotaxis, in a TNFalpha-stimulated granulocytic HL-60 cells. Compounds 1 and 2 were found to be potent enhancers of IL-8 production. 相似文献