首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2880篇
  免费   365篇
  国内免费   409篇
  3654篇
  2024年   14篇
  2023年   94篇
  2022年   134篇
  2021年   194篇
  2020年   190篇
  2019年   153篇
  2018年   177篇
  2017年   122篇
  2016年   136篇
  2015年   140篇
  2014年   120篇
  2013年   247篇
  2012年   92篇
  2011年   122篇
  2010年   91篇
  2009年   172篇
  2008年   137篇
  2007年   144篇
  2006年   158篇
  2005年   88篇
  2004年   104篇
  2003年   78篇
  2002年   74篇
  2001年   81篇
  2000年   63篇
  1999年   65篇
  1998年   56篇
  1997年   30篇
  1996年   38篇
  1995年   39篇
  1994年   33篇
  1993年   24篇
  1992年   29篇
  1991年   29篇
  1990年   22篇
  1989年   18篇
  1988年   13篇
  1987年   9篇
  1986年   11篇
  1985年   19篇
  1984年   19篇
  1983年   10篇
  1982年   15篇
  1981年   8篇
  1980年   10篇
  1979年   7篇
  1978年   8篇
  1977年   6篇
  1976年   3篇
  1975年   4篇
排序方式: 共有3654条查询结果,搜索用时 125 毫秒
1.
Summary Using an aeroscope, airborne fungal spores were sampled for two years, 1987–1988 at Tiruchirapalli, Tamil Nadu, India. The aerospora components, their seasonal and annual variations in incidence in the air are discussed and a spore calendar for Tiruchirapalli is presented.  相似文献   
2.
3.
T.Kent Kirk 《Phytochemistry》1977,16(12):1983-1985
Betulachrysoquinone hemiketal was isolated from pre-extracted wood of Betula lutea Michx. inoculated with Phanerochaete chrysosporium Burds. Acid-catalysed hydrolysis of betulachrysoquinone hemiketal produced betulachrysoquinone which was shown to be 2-hydroxy-6-(13′-hydroxytetradecanyl)-p-benzoquinone.  相似文献   
4.
The life stages ofEntomophaga grylli (Fresenius) Batko Pathotype 2 were purified and separated by centrifugation in PercollR density-gradient medium. The ranges of buoyant densities for germinated resting spores, germ conidia, and resting spores respectively were: 1.040–1.050, 1.055–1.085, and 1.080–1.120 g/ml. Cuticular invasion by germinated germ conidia was the means by whichMelanoplus grasshoppers became infected. Scanning electron micrographs revealed germination of germ conidia on the visible host integument at 100% RH, but not at 90% RH. Significantly higher mortality (P<0.05) was obtained after 3 weeks with grasshoppers incubated in constant light than in constant dark for 24 h following treatment. The disease was not transmitted by ingestion of any life stage. Contribution No 85-153-J, Department of Entomology. Agricultural Experiment Station, Kansas State University, Manhattan, KS 66506.  相似文献   
5.
Four German isolates (FS1, SR2, SAW1 and DEG2) of Bremia lactucae originating from lettuce cultivars with R‐factors R18 and Dm6 + R36 were used for detailed characterization of virulence factors (v‐factors) and for the study of the resistance efficiency in wild Lactuca spp. germplasm. The highest complexity of v‐phenotype was recognized in isolate DEG2, which overcomes resistance in cv. Mariska (R18) and line CS‐RL (L. serriola × L. sativa, R18 + ?), until now known as resistant to all known races of B. lactucae in Europe. However, some sparse sporulation also occurred on cv. Titan (Dm6 + R36). The isolates SR2 and SAW1 overcome the resistance based on the gene R36, but are avirulent to R18. The v‐phenotype of SR2 is highly complex with the most important v‐factors being present except for v14 and v18. The isolate FS1 is the first in Germany originating from a cultivar with R18 (cv. Samourai). The search for efficient sources of resistance in 64 accessions of 11 wild Lactuca spp. and primitive forms of L. sativa showed broad variation in accession–isolate interactions. Expression of race‐specific resistance in wild Lactuca spp. (L. serriola, L. viminea, L. virosa) was recorded frequently. Lactuca indica and L. saligna could be considered as the most efficient sources of resistance against isolates FS1, SR2 and SAW1. The isolate DEG2 showed the highest level of virulence. On seedlings of L. saligna, which is considered as a most important source of resistance against B. lactucae, there was frequently recorded limited sporulation, however this response cannot be considered as a susceptible. Except for some L. saligna accessions (CGN 05310 and CGN 05315), the resistance to all studied isolates was only observed in one accession of L. serriola (PI 253467).  相似文献   
6.
The maize b-32 protein is a functional ribosome-inactivating protein (RIP), inhibiting in vitro translation in the cell-free reticulocyte-derived system and having specific N-glycosidase activity on 28S rRNA. Previous results indicated that opaque-2 (o2) mutant kernels, lacking b-32, show an increased susceptibility to fungal attack and insect feeding and that ectopic expression in plants of a barley and a pokeweed RIP leads to increased tolerance to fungal and viral infection. This prompted us to test whether b-32 might functi on as a protectant against pathogens. The b32.66 cDNA clone under the control of the potato wun1 gene promoter was introduced into tobacco by Agrobacterium tumefaciens-mediated transformation. Out of 23 kanamycin resistant regenerated shoots, 16 contained a PCR fragment of the corrrect size spanning the boundary between the promoter used and the coding region of the b-32 gene. Eight independently transformed tobacco lines were randomly chosen for protein analysis: all of them expressed b-32 protein. The data presented indicate that transgenic tobacco plants expressing b-32 show an increased tolerance against infection by the soil-borne fungal pathogen Rhizoctonia solani Kuhn  相似文献   
7.
Animal models play an important role in understanding the mechanisms of bacterial pathogenesis. Here we review the recent studies of Salmonella infection in various animal models. Although mice are a classic animal model for Salmonella, mice do not normally get diarrhea, raising the question of how well the model represents normal human infection. However, pre-treatment of mice with oral streptomycin, which apparently reduces the normal microbiota, leads to an inflammatory diarrheal response upon oral infection with Salmonella. This has led to a re-evaluation of the role of various Salmonella virulence factors in colonization of the intestine and induction of diarrhea. Indeed, it is now clear that Salmonella purposefully induces inflammation, which leads to the production of both carbon sources and terminal electron acceptors by the host that allow Salmonella to outgrow the normal intestinal microbiota. Overall use of this modified mouse model provides a more nuanced understanding of Salmonella intestinal infection in the context of the microbiota with implications for the ability to predict human risk.  相似文献   
8.
褐飞虱对抗性水稻品种Mudgo个体致害性指标   总被引:1,自引:1,他引:1  
周亦红  韩召军 《昆虫学报》2003,46(3):305-310
在28±1℃下,观测了褐飞虱Nilaparvata lugens羽化24?h内短翅型雌成虫在敏感水稻品种TN1及抗性品种Mudgo上的寿命及体重增量。结果表明,取食抗性品种时,试虫的平均增重与寿命之间表现出明显的正相关。寿命在7天内的个体,存活期间平均体重增量为负值,而存活7天以上的个体则平均增重明显。进一步研究了初羽化的褐飞虱长翅型雌成虫在TN1及Mudgo上取食第1~4天的体重增量、寿命及产卵量,结果发现试虫在Mudgo上的这3个生物学参数之间存在明显正相关。其中,寿命及体重增量较好地反映出害虫个体对抗性品种的致害能力,可作为个体致害性指标。根据研究结果,提出将羽化后在Mudgo上存活7天以上或最初4天内体重增量大于0.1mg的雌成虫定为能够致害该抗性品种的个体。  相似文献   
9.
Archiascomycetes: detection of a major new lineage within the Ascomycota   总被引:4,自引:0,他引:4  
Nishida  Hiromi  Sugiyama  Junta 《Mycoscience》1994,35(4):361-366
For phylogenetic analysis of the higher fungi, we sequenced the nuclear small subunit rRNA (18S rRNA) gene fromTaphrina populina, the type species of the genusTaphrina, andProtomyces lactucae-debilis. The molecular phylogeny inferred from these 2 sequences and 75 sequences from the DNA data bank divided the Ascomycota into three major lineages: the hemiascomycetes, the euascomycetes, and the archiascomycetes, newly described herein. The former two lineages are monophyletic, whereas the archiascomycetes, which originated first and are comprised ofTaphrina, Protomyces, Saitoella, Schizosaccharomyces, andPneumocystis, may not be monophyletic. Among the archiascomycetes, theTaphrina/Protomyces branch is monophyletic. Confirmation of the archiascomycetes as a monophyletic taxonomic class will require comparison of additional genetically defined characters.This work was supported in part by grants 05454030 from the Ministry of Education, Science, and Culture of Japan (to J. S.) and 4369 from the Japan Society for the Promotion of Science Fellowship Programs (to H. N.).  相似文献   
10.
To achieve long-term increases in soil organic carbon (SOC) storage, it is essential to understand the effects of carbon management strategies on SOC formation pathways, particularly through changes in microbial necromass carbon (MNC) and dissolved organic carbon (DOC). Using a 14-year field study, we demonstrate that both biochar and maize straw lifted the SOC ceiling, but through different pathways. Biochar, while raising SOC and DOC content, decreased substrate degradability by increasing carbon aromaticity. This resulted in suppressed microbial abundance and enzyme activity, which lowered soil respiration, weakened in vivo turnover and ex vivo modification for MNC production (i.e., low microbial carbon pump “efficacy”), and led to lower efficiency in decomposing MNC, ultimately resulting in the net accumulation of SOC and MNC. In contrast, straw incorporation increased the content and decreased the aromaticity of SOC and DOC. The enhanced SOC degradability and soil nutrient content, such as total nitrogen and total phosphorous, stimulated the microbial population and activity, thereby boosting soil respiration and enhancing microbial carbon pump “efficacy” for MNC production. The total C added to biochar and straw plots were estimated as 27.3–54.5 and 41.4 Mg C ha−1, respectively. Our results demonstrated that biochar was more efficient in lifting the SOC stock via exogenous stable carbon input and MNC stabilization, although the latter showed low “efficacy”. Meanwhile, straw incorporation significantly promoted net MNC accumulation but also stimulated SOC mineralization, resulting in a smaller increase in SOC content (by 50%) compared to biochar (by 53%–102%). The results address the decadal-scale effects of biochar and straw application on the formation of the stable organic carbon pool in soil, and understanding the causal mechanisms can allow field practices to maximize SOC content.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号