首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7篇
  免费   1篇
  2019年   2篇
  2017年   1篇
  2016年   1篇
  2014年   2篇
  2013年   1篇
  2012年   1篇
排序方式: 共有8条查询结果,搜索用时 218 毫秒
1
1.
The assumption that traits and phylogenies can be used as proxies of species niche has faced criticisms. Evidence suggested that phylogenic relatedness is a weak proxy of trait similarity. Moreover, different processes can select different traits, giving opposing signals in null model analyses. To circumvent these criticisms, we separated traits of stream insects based on the concept of α and β niches, which should give clues about assembling pressures expected to act independently of each other. We investigated the congruence between the phylogenetic structure and trait structure of communities using all available traits and all possible combinations of traits (4095 combinations). To account for hierarchical assembling processes, we analyzed patterns on two spatial scales with three pools of genera. Beta niche traits selected a priori – i.e., traits related to environmental variation (e.g., respiration type) – were consistently clustered on the smaller scale, suggesting environmental filtering, while α niche traits – i.e., traits related to resource use (e.g., trophic position) – did not display the expected overdispersion, suggesting a weak role of competition. Using all traits together provided random patterns and the analysis of all possible combinations of traits provided scenarios ranging from strong clustering to overdispersion. Communities were phylogenetically overdispersed, a pattern previously interpreted as phylogenetic limiting similarity. However, our results likely reflect the co‐occurrence of ancient clades due to the stability of stream habitats along the evolutionary scale. We advise ecologists to avoid using combinations of all available traits but rather carefully traits based on the objective under consideration. Both trait and phylogenetic approaches should be kept in the ecologist toolbox, but phylogenetic distances should not be used as proxies of traits differences. Although the phylogenetic structure revealed processes operating at the evolutionary scale, only specific traits explained local processes operating in our communities.  相似文献   
2.
3.
Ten years after DNA barcoding was initially suggested as a tool to identify species, millions of barcode sequences from more than 1100 species are available in public databases. While several studies have reviewed the methods and potential applications of DNA barcoding, most have focused on species identification and discovery, and relatively few have addressed applications of DNA barcoding data to ecology. These data, and the associated information on the evolutionary histories of taxa that they can provide, offer great opportunities for ecologists to investigate questions that were previously difficult or impossible to address. We present an overview of potential uses of DNA barcoding relevant in the age of ecoinformatics, including applications in community ecology, species invasion, macroevolution, trait evolution, food webs and trophic interactions, metacommunities, and spatial ecology. We also outline some of the challenges and potential advances in DNA barcoding that lie ahead.  相似文献   
4.
5.
Ecophylogenetics can be viewed as an emerging fusion of ecology, biogeography and macroevolution. This new and fast-growing field is promoting the incorporation of evolution and historical contingencies into the ecological research agenda through the widespread use of phylogenetic data. Including phylogeny into ecological thinking represents an opportunity for biologists from different fields to collaborate and has provided promising avenues of research in both theoretical and empirical ecology, towards a better understanding of the assembly of communities, the functioning of ecosystems and their responses to environmental changes. The time is ripe to assess critically the extent to which the integration of phylogeny into these different fields of ecology has delivered on its promise. Here we review how phylogenetic information has been used to identify better the key components of species interactions with their biotic and abiotic environments, to determine the relationships between diversity and ecosystem functioning and ultimately to establish good management practices to protect overall biodiversity in the face of global change. We evaluate the relevance of information provided by phylogenies to ecologists, highlighting current potential weaknesses and needs for future developments. We suggest that despite the strong progress that has been made, a consistent unified framework is still missing to link local ecological dynamics to macroevolution. This is a necessary step in order to interpret observed phylogenetic patterns in a wider ecological context. Beyond the fundamental question of how evolutionary history contributes to shape communities, ecophylogenetics will help ecology to become a better integrative and predictive science.  相似文献   
6.
7.
8.
Phenology of species, the coupling of vital activities to specific times of the year, plays a main role in ecosystem functioning and is expected to be affected by global change. We analysed the temporal structure of 52 amphibian communities in South America encompassing a latitudinal range from 7º to 34º south. Phenological modularity – species tendencies to aggregate along the months – is here introduced as a ubiquitous property of biodiversity architecture. Further, we identified an increase in phenological modularity with species richness, available energy and in communities with lower thermal dependence (i.e. the rate of change in the number of species active along the year associated with the environmental temperature). These patterns are in agreement with predictions derived from several ecological hypotheses: complexity‐stability, species‐energy and metabolic ecology. However, no direct association between modularity and the phylogenetic structure of communities was observed. A structural equation model that outperformed all the plausible alternative models considered supports these results. Modularity is reported here as a main feature of the phenology of communities that depends on environmental conditions. Here, we report for the first time a putative connection between community species richness and the degree of temporal structure – phenological modularity; the thermal dependence shows that communities at low latitudes are more vulnerable to climate change; energetic environments also promote communities with phenological modularity; and latitudinal patterns of phylogenetic community structure can give us clues of which species would be important to the conservation of community processes. These results call for further theoretical analyses to support the connection between phenological modularity, community stability and vulnerability to global change.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号