全文获取类型
收费全文 | 343篇 |
免费 | 21篇 |
国内免费 | 4篇 |
专业分类
368篇 |
出版年
2025年 | 2篇 |
2024年 | 4篇 |
2023年 | 6篇 |
2022年 | 5篇 |
2021年 | 7篇 |
2020年 | 8篇 |
2019年 | 14篇 |
2018年 | 10篇 |
2017年 | 12篇 |
2016年 | 8篇 |
2015年 | 15篇 |
2014年 | 24篇 |
2013年 | 24篇 |
2012年 | 13篇 |
2011年 | 10篇 |
2010年 | 4篇 |
2009年 | 18篇 |
2008年 | 20篇 |
2007年 | 22篇 |
2006年 | 26篇 |
2005年 | 11篇 |
2004年 | 19篇 |
2003年 | 22篇 |
2002年 | 20篇 |
2001年 | 10篇 |
2000年 | 3篇 |
1999年 | 2篇 |
1998年 | 3篇 |
1997年 | 6篇 |
1996年 | 4篇 |
1995年 | 3篇 |
1987年 | 3篇 |
1983年 | 2篇 |
1982年 | 1篇 |
1980年 | 2篇 |
1976年 | 2篇 |
1974年 | 1篇 |
1972年 | 1篇 |
1971年 | 1篇 |
排序方式: 共有368条查询结果,搜索用时 0 毫秒
1.
Berthold Lausen Torsten Hothorn Frank Bretz Martin Schumacher 《Biometrical journal. Biometrische Zeitschrift》2004,46(3):364-374
The identification and assessment of prognostic factors is one of the major tasks in clinical research. The assessment of one single prognostic factor can be done by recently established methods for using optimal cutpoints. Here, we suggest a method to consider an optimal selected prognostic factor from a set of prognostic factors of interest. This can be viewed as a variable selection method and is the underlying decision problem at each node of various tree building algorithms. We propose to use maximally selected statistics where the selection is defined over the set of prognostic factors and over all cutpoints in each prognostic factor. We demonstrate that it is feasible to compute the approximate null distribution. We illustrate the new variable selection test with data of the German Breast Cancer Study Group and of a small study on patients with diffuse large B‐cell lymphoma. Using the null distribution for a p‐value adjusted regression trees algorithm, we adjust for the number of variables analysed at each node as well. (© 2004 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim) 相似文献
2.
One of the fundamental issues to ensure maximal performance improvement in a cluster computing environment is load distribution, which is commonly achieved by using polling-based load distribution algorithms. Such algorithms suffer from two weaknesses: (1) Load information exchanged during a polling session is confined to the two negotiating nodes only. (2) Such algorithms are not scalable in that growth of the distributed system is accompanied with increasing amount of polling sessions.In this paper, we proposed a LD algorithm which is based on anti-tasks and load state vectors. Anti-tasks travel around the distributed system for pairing up task senders and receivers. As an anti-task travels, timed load information is collected and disseminated over the entire system via the load state vector bundled with the anti-task. Guided by load state vectors, anti-tasks are spontaneously directed towards processing nodes having high transient workload, thus allowing their surplus workload to be relocated soonest possible. No peer-to-peer negotiations between senders and receivers are needed.To reduce the network bandwidth consumption caused by the anti-task algorithm, the number of hosts that an anti-task needs to travel to must be carefully limited. The algorithm achieves this by employing the mathematical notion of Finite Projective Plane (FPP). By employing FPP, the number of nodes that each anti-task has to travel is at most
, where N is the number of nodes in the system, without sacrifying the spread of load information. 相似文献
3.
Breathtaking advances in DNA nanotechnology have established DNA as a promising biomaterial for the fabrication of programmable higher-order nano/microstructures. In the context of developing artificial cells and tissues, DNA droplets have emerged as a powerful platform for creating intelligent, dynamic cell-like machinery. DNA droplets are a microscale membrane-free coacervate of DNA formed through phase separation. This new type of DNA system couples dynamic fluid-like property with long-established DNA programmability. This hybrid nature offers an advantageous route to facile and robust control over the structures, functions, and behaviors of DNA droplets. This review begins by describing programmable DNA condensation, commenting on the physical properties and fabrication strategies of DNA hydrogels and droplets. By presenting an overview of the development pathways leading to DNA droplets, it is shown that DNA technology has evolved from static, rigid systems to soft, dynamic systems. Next, the basic characteristics of DNA droplets are described as intelligent, dynamic fluid by showcasing the latest examples highlighting their distinctive features related to sequence-specific interactions and programmable mechanical properties. Finally, this review discusses the potential and challenges of numerical modeling able to connect a robust link between individual sequences and macroscopic mechanical properties of DNA droplets. 相似文献
4.
A P system and a constructive membrane-inspired DNA algorithm for solving the Maximum Clique Problem
We present a P system with replicated rewriting to solve the Maximum Clique Problem for a graph. Strings representing cliques are built gradually. This involves the use of inhibitors that control the space of all generated solutions to the problem. Calculating the maximum clique for a graph is a highly relevant issue not only on purely computational grounds, but also because of its relationship to fundamental problems in genomics. We propose to implement the designed P system by means of a DNA algorithm. This algorithm is then compared with two standard papers that addressed the same problem and its DNA implementation in the past. This comparison is carried out on the basis of a series of computational and physical parameters. Our solution features a significantly lower cost in terms of time, the number and size of strands, as well as the simplicity of the biological implementation. 相似文献
5.
给定无向图,图的最小极大匹配问题是寻找每条边都不相邻的最大集中的最小者,这个问题是著名的NP-完全问题.1994年Adleman博士首次提出用DNA计算解决NP-完全问题,以编码的DNA序列为运算对象,通过分子生物学的运算操作解决复杂的数学难题,使得NP-完全问题的求解可能得到解决.提出了基于质粒DNA的无向图的最大匹配问题的DNA分子生物算法,通过限制性内切酶的酶切和凝胶电泳完成解的产生和最终接的分离,依据分子生物学的实验手段,算法是有效并且可行的. 相似文献
6.
随着分子生物信息数据量高速增长,生物信息学面临着大规模、高通量、密集型计算的巨大挑战。为有效利用计算机资源,缩短高通量生物信息计算程序执行时间,我们基于Globus Toolkit网格中间件,实现了一个支持高通量生物数据计算的网格系统(Biological Data Computing Grid,简称BDCGrid)。BDCGrid计算网格系统模型可以有效整合中小型生物信息学实验室计算机资源,大大缩短高通量生物信息计算程序执行时间,为相关研究人员利用现有计算机资源处理大规模、高通量生物信息计算任务提供一种新的途径。 相似文献
7.
The static fluid mosaic model of biological membranes has been progressively complemented by a dynamic membrane model that includes phospholipid reordering in domains that are proposed to extend from nanometers to microns. Kinetic models for lipolytic enzymes have only been developed for homogeneous lipid phases. In this work, we develop a generalization of the well-known surface dilution kinetic theory to cases where, in a same lipid phase, both domain and nondomain phases coexist. Our model also allows understanding the changes in enzymatic activity due to a decrease of free substrate concentration when domains are induced by peptides. This lipid reordering and domain dynamics can affect the activity of lipolytic enzymes, and can provide a simple explanation for how basic peptides, with a strong direct interaction with acidic phospholipids (such as beta-amyloid peptide), may cause a complex modulation of the activities of many important enzymes in lipid signaling pathways. 相似文献
8.
RON EGLASH AUDREY BENNETT CASEY O'DONNELL SYBILLYN JENNINGS MARGARET CINTORINO 《American anthropologist》2006,108(2):347-362
Ethnomathematics is the study of mathematical ideas and practices situated in their cultural context. Culturally Situated Design Tools (CSDTs) are web-based software applications that allow students to create simulations of cultural arts—Native American beadwork, African American cornrow hairstyles, urban graffiti, and so forth—using these underlying mathematical principles. This article is a review of the anthropological issues raised in the CSDT project: negotiating the representations of cultural knowledge during the design process with community members, negotiating pedagogical features with math teachers and their students, and reflecting on the software development itself as a cultural construction. The move from ethnomathematics to ethnocomputing results in an expressive computational medium that affords new opportunities to explore the relationships between youth identity and culture, the cultural construction of mathematics and computing, and the formation of cultural and technological hybridity. 相似文献
9.
Jacob N. Barney Daniel R. Tekiela Maria Noelia Barrios-Garcia Romina D. Dimarco Ruth A. Hufbauer Peter Leipzig-Scott Martin A. Nuñez Aníbal Pauchard Petr Pyšek Michaela Vítková Bruce D. Maxwell 《Ecology and evolution》2015,5(14):2878-2889
Terrestrial invasive plants are a global problem and are becoming ubiquitous components of most ecosystems. They are implicated in altering disturbance regimes, reducing biodiversity, and changing ecosystem function, sometimes in profound and irreversible ways. However, the ecological impacts of most invasive plants have not been studied experimentally, and most research to date focuses on few types of impacts, which can vary greatly among studies. Thus, our knowledge of existing ecological impacts ascribed to invasive plants is surprisingly limited in both breadth and depth. Our aim was to propose a standard methodology for quantifying baseline ecological impact that, in theory, is scalable to any terrestrial plant invader (e.g., annual grasses to trees) and any invaded system (e.g., grassland to forest). The Global Invader Impact Network (GIIN) is a coordinated distributed experiment composed of an observational and manipulative methodology. The protocol consists of a series of plots located in (1) an invaded area; (2) an adjacent removal treatment within the invaded area; and (3) a spatially separate uninvaded area thought to be similar to pre-invasion conditions of the invaded area. A standardized and inexpensive suite of community, soil, and ecosystem metrics are collected allowing broad comparisons among measurements, populations, and species. The method allows for one-time comparisons and for long-term monitoring enabling one to derive information about change due to invasion over time. Invader removal plots will also allow for quantification of legacy effects and their return rates, which will be monitored for several years. GIIN uses a nested hierarchical scale approach encompassing multiple sites, regions, and continents. Currently, GIIN has network members in six countries, with new members encouraged. To date, study species include representatives of annual and perennial grasses; annual and perennial forbs; shrubs; and trees. The goal of the GIIN framework is to create a standard yet flexible platform for understanding the ecological impacts of invasive plants, allowing both individual and synthetic analyses across a range of taxa and ecosystems. If broadly adopted, this standard approach will offer unique insight into the ecological impacts of invasive plants at local, regional, and global scales. 相似文献
10.
This paper presents a method to convert the deterministic, continuous representation of a biological system by ordinary differential equations into a non-deterministic, discrete membrane computation. The dynamics of the membrane computation is governed by rewrite rules operating at certain rates. That has the advantage of applying accurately to small systems, and to expressing rates of change that are determined locally, by region, but not necessary globally. Such spatial information augments the standard differentiable approach to provide a more realistic model. A biological case study of the ligand–receptor network of protein TGF-β is used to validate the effectiveness of the conversion method. It demonstrates the sense in which the behaviours and properties of the system are better preserved in the membrane computing model, suggesting that the proposed conversion method may prove useful for biological systems in particular. 相似文献