首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   233篇
  免费   27篇
  国内免费   7篇
  267篇
  2022年   1篇
  2021年   3篇
  2020年   3篇
  2019年   4篇
  2018年   9篇
  2017年   7篇
  2016年   12篇
  2015年   6篇
  2014年   7篇
  2013年   29篇
  2012年   7篇
  2011年   8篇
  2010年   17篇
  2009年   8篇
  2008年   10篇
  2007年   11篇
  2006年   14篇
  2005年   13篇
  2004年   12篇
  2003年   15篇
  2002年   9篇
  2001年   6篇
  2000年   4篇
  1999年   10篇
  1998年   5篇
  1997年   6篇
  1996年   10篇
  1995年   2篇
  1994年   4篇
  1993年   8篇
  1992年   4篇
  1990年   1篇
  1989年   1篇
  1988年   1篇
排序方式: 共有267条查询结果,搜索用时 15 毫秒
1.
BACKGROUND: Polyethylenimines (PEIs) with high molecular weights are effective nonviral gene delivery vectors. However, the in vivo use of these PEIs can be hampered by their cellular toxicity. In the present study we developed and tested a new PEI polymer synthesized by linking less toxic, low molecular weight (MW) PEIs with a commonly used, biocompatible drug carrier, beta-cyclodextrin (CyD). METHODS AND RESULTS: The terminal CyD hydroxyl groups were activated by 1,1'-carbonyldiimidazole. Each activated CyD then linked two branched PEI molecules with MW of 600 Da to form a CyD-containing polymer with MW of 61 kDa, in which CyD served as a part of the backbone. The PEI-CyD polymer developed was soluble in water and biodegradable. In cell viability assays with sensitive neurons, the polymer performed similarly to low-MW PEIs and displayed much lower cellular cytotoxicity compared to PEI 25 kDa. The gene delivery efficiency of the polymer was comparable to, and at higher polymer/DNA ratios even higher than, that offered by PEI 25 kDa in neural cells. Attractively, intrathecal injection of plasmid DNA complexed by the polymer into the rat spinal cord provided levels of gene expression close to that offered by PEI 25 kDa. CONCLUSIONS: The polymer reported in the current study displayed improved biocompatibility over non-degradable PEI 25 kDa and mediated gene transfection in cultured neurons and in the central nervous system effectively. The new polymer would be worth exploring further as an in vivo delivery system of therapeutic genetic materials for gene therapy of neurological disorders.  相似文献   
2.
3.
How dietary fatty acids are absorbed into the enterocyte and transported to the ER is not established. We tested the possibility that caveolin-1 containing lipid rafts and endocytic vesicles were involved. Apical brush border membranes took up 15% of albumin bound 3H-oleate whereas brush border membranes from caveolin-1 KO mice took up only 1%. In brush border membranes, the 3H-oleate was in the detergent resistant fraction of an OptiPrep gradient. On OptiPrep gradients of intestinal cytosol, we also found the 3H-oleate in the detergent resistant fraction, separate from OptiPrep gradients spiked with 3H-oleate or 3H-triacylglycerol. Caveolin-1 immuno-depletion of cytosol removed 91% of absorbed 3H-oleate whereas immuno-depletion using IgG, or anti-caveolin-2 or -3 or anti-clathrin antibodies removed 20%. Electron microscopy showed the presence of caveolin-1 containing vesicles in WT mouse cytosol that were 4 fold increased by feeding intestinal sacs 1 mM oleate. No vesicles were seen in caveolin-1 KO mouse cytosol. Caveolin-1 KO mice gained less weight on a 23% fat diet and had increased fat in their stool compared to WT mice. We conclude that dietary fatty acids are absorbed by caveolae in enterocyte brush border membranes, are endocytosed, and transported in cytosol in caveolin-1 containing endocytic vesicles.  相似文献   
4.
Sucrose monolauroyl esters were found to serve as substrates for cyclodextrin glucanotransferase (CGTase)-catalyzed transglucosidation reactions, affording new sucrose esters that have an additional 1-3 glucose residues on the pyranose ring of the sucrose moiety in the ester.  相似文献   
5.
Polyethylene glycol (PEG)‐based low generation dendrimers are analyzed as single excipient or combined with trehalose in relation to their structure and efficiency as enzyme stabilizers during freeze‐thawing, freeze‐drying, and thermal treatment. A novel functional dendrimer (DGo‐CD) based on the known PEG's ability as cryo‐protector and β‐CD as supramolecular stabilizing agent is presented. During freeze‐thawing, PEG and β‐CD failed to prevent catalase denaturation, while dendrimers, and especially DGo‐CD, offered the better protection to the enzyme. During freeze‐drying, trehalose was the best protective additive but DGo‐CD provided also an adequate catalase stability showing a synergistic behavior in comparison to the activities recovered employing PEG or β‐CD as unique additives. Although all the studied dendrimers improved the enzyme remaining activity during thermal treatment of freeze‐dried formulations, the presence of amorphous trehalose was critical to enhance enzyme stability. The crystallinity of the protective matrix, either of PEG derivatives or of trehalose, negatively affected catalase stability in the freeze‐dried systems. When humidified at 52% of relative humidity, the dendrimers delayed trehalose crystallization in the combined matrices, allowing extending the protection at those conditions in which normally trehalose fails. The results show how a relatively simple covalent combination of a polymer such as PEG with β‐CD could significantly affect the properties of the individual components. Also, the results provide further insights about the role played by polymer–enzyme supramolecular interactions (host–guest crosslink, hydrogen bonding, and hydrophobic interactions) on enzyme stability in dehydrated models, being the effect on the stabilization also influenced by the physical state of the matrix. © 2013 American Institute of Chemical Engineers Biotechnol. Prog., 29:786–795, 2013  相似文献   
6.
The cyclodextrin glycosyltransferase (CGTase) is an important enzyme for cyclodextrin (CD) production, and is also widely used in the biotechnology, food, and pharmaceuticals industries. Secretory CGTase production by recombinant Komagataella phaffii using defined medium is a promising approach because of low cost, less impurity protein. It was found that no CGTase was expressed using traditional defined medium (basal salt medium [BSM]) because of pH value decreasing significantly. CGTase was expressed by recombinant K. phaffii through pH maintenance in range of 5.5–7.0. β-CGTase activity increased to 122.0 U/mL after optimization of glycerol, phosphate buffer, pH value, ammonium sulfate, temperature, methanol, and additives based on BSM, establishing a modified defined medium. These results showed that it was necessary to establish recombinant K. phaffii-based special defined medium although the same host cell used for different heterologous protein expression.  相似文献   
7.
2-O-α-d-glucopyranosyl-l-ascorbic acid (AA-2G) is one of the most important l-ascorbic acid derivatives because of its resistance to reduction and oxidation and its easy degradation by α-glucosidase to release l-ascorbic acid and glucose. Thus, AA-2G has commercial uses in food, medicines and cosmetics. This article presents a review of recent studies on the enzymatic production of AA-2G using cyclodextrin glycosyltransferase. Reaction mechanisms with different donor substrates are discussed. Protein engineering, physical and biological studies of cyclodextrin glycosyltransferase are introduced from the viewpoint of effective AA-2G production. Future prospects for the production of AA-2G using cyclodextrin glycosyltransferase are reviewed.  相似文献   
8.
Racemic aminophosphonic acids were completely resolved into their enantiomers by capillary electrophoresis using β-cyclodextrin as a chiral selector in a borate electrolyte. The reproducibility of sample injection, solute migration time, and detection limits of the solute were studied. The calibration curve obtained from peak areas was linear over the concentration range of 10 to 300 μg/mL. © 1996 Wiley-Liss, Inc.  相似文献   
9.
Even though amino acids are important trace components in the brewing of beers, they have not been extensively evaluated in these beverages. Studies involving the enantiomeric composition of these amino acids are even less prevalent. A brief summary of the brewing process for malt beverages is given. The total concentration and enantiomeric composition of three amino acids (leucine, phenylalanine, and proline) were determined in 25 different beers. Proline tended to have the highest average absolute concentration and the lowest percentage of the D -enantiomer in most samples. In some cases the relative amounts of D -phenylalanine and D -leucine exceeded 10% of the individual amino acids. The enantiomeric composition of the amino acids in different beer samples did not vary as extensively as the absolute concentrations. The reason for the concentration differences between proline and the other amino acids is discussed. A knowledge of amino acid concentrations and enantiomeric compositions appears to be useful in characterizing specific beers and brewing processes. © 1996 Wiley-Liss, Inc.  相似文献   
10.
The catalytic properties of β-cyclodextrin glucanotransferase (β-CGTase) from alkalophilicBacillus sp. BL-12 specific for the intermolecular transglycosylation of stevioside were investigated. The molecular mass of purified β-CGTase by ultra-filtration and β-cyclodextrin polymer affinity chromatography was estimated to be 90 kDa, which is high compared to other known bacterial CGTases. The optimal pH and temperature were 9.0 and 50°C, respectively, and thermal stability at 40°C was elevated 10-fold in the presence of 1% maltodextrin. The kinetic parameters of the new β-CGTase from alkalophilicBacillus sp. BL-12 indicate that it is more suitable for transglycosylation than the cyclization reaction. Maltodextrin was the most suitable glycosyl donor for transglycosylation of stevioside. The transglycosylation of stevioside was carried out using 60 units of CGTase per gram of maltodextrin, 20 g/L stevioside as the glycosyl acceptor, and 50 g/L maltodextrin as the gycosyl donor at 40°C for 6 h, and a conversion yield of stevioside as high as 76% was obtained.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号