首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5篇
  免费   0篇
  2014年   1篇
  2006年   1篇
  1981年   1篇
  1980年   1篇
  1976年   1篇
排序方式: 共有5条查询结果,搜索用时 171 毫秒
1
1.
Heliothis zea was reared on artificial diets which lacked supplementation with plant materials but were supplemented with different sterols in order to determine how certain structural features of a sterol molecule affect the development of this insect. We found that sitosterol and cholesterol supported a more rapid rate of growth than did campesterol. Larvae did not moult when they ingested 5-pregnen-3β-ol. Larvae utilized spinasterol more efficiently than lathosterol. Such a pronounced effect was not observed in the Δ5-series. The substitution of a Δ7-bond (spinasterol, dihydrospinasterol, lathosterol) for the Δ5-bond (stigmasterol, sitosterol, cholesterol) in the 24-ethyl- and desalkylsterols reduced the rate of growth of the larvae. Although larvae developed normally on cholesterol, the addition of a Δ7-bond to give the Δ5,7-diene system apparently altered the functionality of the molecule because 7-dehydrocholesterol did not support larval development. The growth of larvae was also inhibited, although not prevented, when they consumed diets which contained ergosterol. In contrast, the larvae completed their development more rapidly on brassicasterol which lacked the Δ7-bond. Cholestanol supported the complete development of the insect. H. zea is unusual among investigated insects because it develops both on cholestanol and lathosterol but does not utilize ergosterol efficiently and fails to grow on 7-dehydrocholesterol.  相似文献   
2.
The selectivity of the antibiotic nystatin towards ergosterol compared to cholesterol is believed to be a crucial factor in its specificity for fungi. In order to define the structural features of sterols that control this effect, nystatin interaction with ergosterol-, cholesterol-, brassicasterol- and 7-dehydrocholesterol-containing palmitoyloleoylphosphocholine vesicles was studied by fluorescence spectroscopy. Variations in sterol structure were correlated with their effect on nystatin photophysical and activity properties. Substitution of cholesterol by either 7-dehydrocholesterol or brassicasterol enhance nystatin ability to dissipate a transmembrane K+ gradient, showing that the presence of additional double bonds in these sterols-carbon C7 and C22, plus an additional methyl group on C-24, respectively-as compared to cholesterol, is fundamental for nystatin-sterol interaction. However, both modifications of the cholesterol molecule, like in the fungal sterol ergosterol, are critical for the formation of very compact nystatin oligomers in the lipid bilayer that present a long mean fluorescence lifetime and induce a very fast transmembrane dissipation. These observations are relevant to the molecular mechanism underlying the high selectivity presented by nystatin towards fungal cells (with ergosterol) as compared to mammalian cells (with cholesterol).  相似文献   
3.
4.
We present a comparative differential scanning calorimetric study of the effects of the animal sterol cholesterol (Chol) and the plant sterols campesterol (Camp) and brassicasterol (Bras) on the thermotropic phase behavior of dipalmitoylphosphatidylcholine (DPPC) bilayers. Camp and Bras differ from Chol in having a C24 methyl group and, additionally for Bras, a C22 trans-double bond. Camp and especially Bras decrease the temperature, cooperativity and enthalpy of the DPPC pretransition more than Chol, although these effects are attenuated at higher sterol levels. This indicates that they destabilize gel-state DPPC bilayers to a greater extent, but are less soluble, than Chol. Not surprisingly, all three sterols have similar effects on the sterol-poor sharp component of the DPPC main phase transition. However, Camp and especially Bras less effectively increase the temperature and decrease the cooperativity and enthalpy of the broad component of the main transition than Chol. This indicates that at higher sterol concentrations, Camp and Bras are less miscible and less effective than Chol at ordering the hydrocarbon chains of the sterol-enriched fluid DPPC bilayers. Overall, these alkyl side chain modifications generally reduce the ability of Chol to produce its characteristic effects on DPPC bilayer physical properties. These differences are likely due to the less extended and more bent conformations of the alkyl side chains of Camp and Bras, producing sterols with a greater effective cross-sectional area and reduced length than Chol. Hence, the structure of Chol is likely optimized for maximum solubility in, as opposed to maximum ordering of, phospholipid bilayers.  相似文献   
5.
The sterol fraction was examined from cultures of the filamentous red alga Goniotrichum elegans. Brassicasterol accounted for nearly half of the total sterol and was accompanied by cholesterol (24%) as well as a number of minor components. This is the first record of brassicasterol as a major sterol in the Rhodophycophyta. The occurrence of this C28 major sterol may be of taxonomic importance in determining the relationship of the Goniotrichales to the other red algae of which have C27 major sterols.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号