排序方式: 共有28条查询结果,搜索用时 9 毫秒
1.
The kinetics of decay in absorbance at 610 nm in the reaction of cysteine with ceruloplasmin was biphasic under anaerobic conditions. Admission of oxygen to the bleached ceruloplasmin restored the blue color to about 75 % of the original value. However, under aerobic or anaerobic conditions an initial bleaching corresponded to a 25 % decrease in blue color. This change was irreversible and remained after removal of excess cysteine from the reaction mixture by dialysis. There was no correlation between transient and steady-state kinetic parameters. Circular dichroism measurements showed a characteristic reduction in the negative band at 450 nm, which is specific for type 1b copper. Isolation and further studies on cysteine-modified ceruloplasmin with a lower A610/A280 ratio showed < 10% reduction in enzyme activity toward p-phenylenediamine and o-dianisidine. Evidence is also presented that ceruloplasmin catalyzes the oxidation of cysteine with a one-electron reduction of oxygen and the formation of superoxide ion, which is then converted to H2O2 by ceruloplasmin. The effect of superoxide dismutase and catalase also confirms the presence of superoxide and H2O2. In sum, these data show that a permanent reduction of type 1b copper occurred when cysteine was used as a substrate. We conclude that there is a single electron transfer from cysteine directly to oxygen using one specific copper of ceruloplasmin, type 1b. 相似文献
2.
The hemoglobin binding sites on the inner surface of the erythrocyte membrane were identified by measuring the fraction of hemoglobin released following selective proteolytic or lipolytic enzyme digestion. In addition, binding stoichiometry to and fractional hemoglobin release from inside-out vesicle preparations of human and rabbit membranes were compared since rabbit membranes differ significantly from human membranes only in that they lack glycophorin. Our results show that rabbit inside-out vesicles bind about 65% less human or rabbit hemoglobin under conditions of optimal and stoichiometric binding, despite being otherwise similar in composition. We suggest that this difference is either directly or indirectly due to the absence of glycophorin in rabbit membranes. Further supportive evidence includes demonstrating (a) that neuraminidase treatment of human membranes did not affect hemoglobin binding and (b) that reconstitution of isolated glycophorin into phospholipid vesicles increased the hemoglobin binding capacity in a manner proportional to the fraction of glycophorin molecules oriented with their cytoplasmic sides exposed to the exterior of the vesicle. Proteolysis of human inside-out vesicles either before or after addition of hemoglobin reduced the binding capacity by about 25%. This is consistent with the known proportion of total hemoglobin binding sites involving band 3 protein and the selective lability of the cytoplasmic aspect of band 3 protein to proteolysis. Phospholipid involvement in hemoglobin binding was determined using various phospholipase C preparations which differ in their reactivity profiles. Approximately 38% of the bound hemoglobin was released upon cleavage of phospholipid headgroups. These results suggest that the predominant sites of binding for hemoglobin on the inner surface of the red cell membrane are the two major integral membrane glycoproteins. 相似文献
3.
Yan J. Jiang Tian-Rui Xu Biao Lu David Mymin Edwin A. Kroeger Tom Dembinski Xi Yang Grant M. Hatch Patrick C. Choy 《Biochimica et Biophysica Acta (BBA)/Molecular and Cell Biology of Lipids》2003,1633(1):51-60
Cyclooxygenase (COX) is the rate-limiting enzyme for the biosynthesis of prostaglandins in monocytes/macrophages. The COX-1 is constitutively expressed in most tissues and may be involved in cellular homeostasis, whereas the COX-2 is an inducible enzyme that may play an important role in inflammation and mitogenesis. When U937 monocytic cells were incubated with retinoic acid (RA) for 48 h, cell differentiation took place with concomitant increases in prostaglandin E2 (PGE2) production and COX activity. In this study, the mechanism of RA (all-trans- or 9-cis-RA)-induced enhancement of PGE2 biosynthesis in U937 cells was examined. Treatment of cells with all-trans- or 9-cis-RA up to 48 h caused an increase in PGE2 production in a time- and dose-dependent manner. Both RA isomers caused the enhancement of PGE2 production and the up-regulation of COX-1 expression at the protein and mRNA levels. The increase in COX-1 mRNA was found to precede the increase in COX-1 protein expression. Interestingly, the COX-2 protein and COX-2 mRNA were not detected in U937 cells, and their levels remained undetectable during the entire course of RA treatment. We conclude that treatment of U937 cells by RA for 48 h caused the initiation of cell differentiation, which was found to be concomitant with a significant increase in PGE2 production mediated via the up-regulation of COX-1 mRNA and protein expression. 相似文献
4.
5.
Tadini-Buoninsegni F Bartolommei G Moncelli MR Pilankatta R Lewis D Inesi G 《FEBS letters》2010,584(22):4619-4622
ATP7B is a copper dependent P-type ATPase, required for copper homeostasis. Taking advantage of high yield heterologous expression of recombinant protein, we investigated charge transfer in ATP7B. We detected charge displacement within a single catalytic cycle upon ATP addition and formation of phosphoenzyme intermediate. We attribute this charge displacement to movement of bound copper within ATP7B. Based on specific mutations, we demonstrate that enzyme activation by copper requires occupancy of a site in the N-terminus extension which is not present in other transport ATPases, as well as of a transmembrane site corresponding to the cation binding site of other ATPases. 相似文献
6.
The relationship between the binding patterns of soybean agglutinin, peanut agglutinin (both in their native (unaggregated) form and in their polymerized form), and of Phaseolus vulgaris leucoagglutinin, to neuraminidase-treated lymphocytes from different sources, and the mitogenic activity of these lectins, was studied. In all cases investigated, binding of a lectin to lymphocytes which resulted in stimulation was a positive cooperative process. Our findings support the assumption that clustering of receptors and conformational changes in membrane structure are prerequisites for mitogenic stimulation. 相似文献
7.
8.
In proteomics the ability to visualize proteins from electropherograms is essential. Here a new protocol for staining and destaining gels treated with Ruthenium II tris (bathophenantroline disulfonate) is presented. The method is compared with the silver-staining procedure of Swain and Ross, the Ruthenium II tris (bathophenantroline disulfonate) stain described by Rabilloud (Rabilloud T., Strub, S. M. Luche, S., Girardet, S. L. et al., Proteomics 2001, 1, 699-704) and the SYPRO Ruby gel stain. The method offers a better signal-to-background ratio with improved baseline resolution for both sodium dodecyl sulfate-polyacrylamide gels and two-dimensional gels. 相似文献
9.
Pre-cast bis(2-hydroxyethyl)iminotris(hydroxymethyl)methane (Bis-Tris) gels have proven to be very suitable for pre-fractionation for LC-MS/MS analysis due to high reliability and long stability. To visualize proteins within gels fluorescence dyes proved to be a good tradeoff between sensitivity and MS-compatibility. The custom-made ruthenium dye represents a low-cost alternative regarding fluorescence-based protein visualization with high sensitivity. We demonstrate, that this dye is incompatible with Bis-Tris gels, while using Tris-Glycine gels a competitive sensitivity to commercially available stains can be achieved. 相似文献
10.
It has been suggested that the human red cell anion transport protein, band 3, is the site not only of the cation leak induced in human red cells by treatment with the sulfhydryl reagent pCMBS () but is also the site for the inhibition of water flux induced by the same reagent. Our experiments indicate that , a sulfhydryl reagent that does not inhibit water transport, also does not induce a cation leak. We have found that the profile of inhibition of water transport by mercurial sulfhydryl reagents is closely mirrored by the effect of these same reagents on the induction of the cation leak. In order to determine whether these effects are caused by band 3 we have reconstituted phosphatidylcholine vesicles containing only purified band 3. Control experiments indicate that these band 3 vesicles do not contain ( as measured by ATP dephosphorylation. pCMBS treatment caused a significant increase in the cation leak in this preparation, consistent with the view that the pCMBS-induced cation leak in whole red cells is mediated by band 3. 相似文献