首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   22602篇
  免费   1072篇
  国内免费   707篇
  24381篇
  2024年   19篇
  2023年   260篇
  2022年   426篇
  2021年   540篇
  2020年   508篇
  2019年   744篇
  2018年   771篇
  2017年   427篇
  2016年   553篇
  2015年   699篇
  2014年   1438篇
  2013年   1651篇
  2012年   936篇
  2011年   1458篇
  2010年   1026篇
  2009年   1092篇
  2008年   1266篇
  2007年   1270篇
  2006年   1162篇
  2005年   1021篇
  2004年   910篇
  2003年   758篇
  2002年   742篇
  2001年   449篇
  2000年   404篇
  1999年   412篇
  1998年   434篇
  1997年   356篇
  1996年   311篇
  1995年   316篇
  1994年   288篇
  1993年   224篇
  1992年   189篇
  1991年   166篇
  1990年   143篇
  1989年   122篇
  1988年   109篇
  1987年   106篇
  1986年   80篇
  1985年   85篇
  1984年   109篇
  1983年   97篇
  1982年   86篇
  1981年   67篇
  1980年   62篇
  1979年   41篇
  1978年   19篇
  1977年   13篇
  1976年   5篇
  1973年   4篇
排序方式: 共有10000条查询结果,搜索用时 0 毫秒
1.
In vitro binding affinities of various progestins to cytosol and nuclear progesterone receptors of rabbit uterus were determined and correlated with the biological potency of these steroids. In addition, cytosol and nuclear progesterone receptor levels were measured after a 5-day administration of different progestins (0.5 mg/kg daily) with variable biologic activites. The receptor levels were compared with the bilological response; the induction of uteroglobin synthesis. Cytosol and nuclear progesterone receptors had identical steroid binding properties (r = 0.98). The correlation between the in vitro binding affinity (cytosol or nuclear) and the in vivo biologic activity of the steroids was good (r = 0.73). After a 5-day treatment with progestins, the nuclear receptor concentration correlated in an inverse manner (r = ?0.84) with the uterine fluid unteroglobin concentration. A similar, but slightly weaker correlation (r = ?0.81) was also found for the cytosol receptor content and uteroglobin secretion. These data indicate that not only nuclear, but also cytosol progesterone receptor levels decrease in the rabbit uterus during chronic hormone action. Decline in the nuclear progesterone receptor content seemed to occur during treatment with all progestational steroids, while onlyi progestins with high biological potency were capable of decreasing the cytosol receptor content.  相似文献   
2.
3.
Summary Madin-Darby canine kidney (MDCK) cells kept in suspension culture for 12–15 hr displayed high-affinity binding sites for125I-lathyritic (soluble) collagen (120,000/cell,K D =30nm) and preferred collagens types I and IV over laminin or fibronectin as substrates during the first hour of attachment. On the other hand, after 4 hr, attachment to all four substrates was equally efficient. Upon challenge with a collagen substrate, the high-affinity sites were rapidly recruited on it (T1/2=6 min). Their occupancy by soluble collagen triggered the exocytosis of a second large population of low-affinity collagen binding sites that included laminin and seems to be involved in a second cell-attachment mechanism. These results are compatible with a twostep model of MDCK cell attachment to the substrate: first, via high-affinity collagen binding sites, and second, via laminin of cellular origin.  相似文献   
4.
Rat brain striatum slices were incubated with [3H]choline, perfused with a physiological buffer, and stimulated by perfusion with a K+-enriched buffer for 2 min. The tritium overflow evoked by K+ was decreased by 5-hydroxytryptamine (serotonin, 5-HT) (maximal inhibition 10(-6) M). This effect of 5-HT was mimicked by several agonists (5-methoxytryptamine, N,N-dimethyl-tryptamine, bufotenin) and blocked by serotonergic antagonists (methiothepin, methysergide, cinanserin) but not by haloperidol; methiothepin and methysergide alone slightly increased the K+-evoked overflow of tritium (3H). Inhibition of the tritium release by 5-HT was not suppressed in the presence of tetrodotoxin (TTX) (10(-6) M). These results suggest that 5-HT tonically inhibits acetylcholine (ACh) release from striatal cholinergic neurons by acting on a presynaptic receptor localized on cholinergic terminals.  相似文献   
5.
We previously reported the identification of DP-1 isoforms (α and β), which are structurally C-terminus-deleted ones, and revealed the low-level expression of these isoforms. It is known that wild-type DP-1 is degraded by the ubiquitin-proteasome system, but few details are known about the domains concerned with the protein stability/instability for the proteolysis of these DP-1 isoforms. Here we identified the domains responsible for the stability/instability of DP-1. Especially, the DP-1 “Stabilon” domain was a C-terminal acidic motif and was quite important for DP-1 stability. Moreover, we propose that this DP-1 Stabilon may be useful for the stability of other nuclear proteins when fused to them.  相似文献   
6.
Abstract: Phosphorylation of G protein-coupled receptors is considered an important step during their desensitization. In SK-N-BE cells, recently presented as a pertinent model for the studies of the human δ-opioid receptor, pretreatment with the opioid agonist etorphine increased time-dependently the rate of phosphorylation of a 51-kDa membrane protein. Immunological characterization of this protein with an antibody, raised against the amino-terminal region of the cloned human δ-opioid receptor, revealed that it corresponded to the δ-opioid receptor. During prolonged treatment with etorphine, phosphorylation increased as early as 15 min to reach a maximum within 1 h. Phosphorylation and desensitization of adenylyl cyclase inhibition paralleled closely and okadaic acid inhibited the resensitization, a result strongly suggesting that phosphorylation of the δ-opioid receptor plays a prominent role in its rapid desensitization. The increase in phosphorylation of the δ-opioid receptor, as well as its desensitization, was not affected by H7, an inhibitor of protein kinase A and protein kinase C, but was drastically reduced by heparin or Zn2+, known to act as G protein-coupled receptor kinase (GRK) inhibitors. These results are the first to show, on endogenously expressed human δ-opioid receptor, that a close link exists between receptor phosphorylation and agonist-promoted desensitization and that desensitization involves a GRK.  相似文献   
7.
The occurrence of a second neoplasm is one of the major obstacles in cancer chemotherapy. The elucidation of the genotoxic effects induced by anti-cancer drugs is considered to be helpful in identifying the degree of cancer risk. Numerous investigations on cancer patients after chemotherapy have demonstrated: (i) an increase in the in vivo somatic cell mutant frequency (Mf) at three genetic loci, including hypoxanthine–guanine phosphoribosyl-transferase (hprt), glycophorin A (GPA), and the T-cell receptor (TCR), and (ii) alterations in the mutational spectra of hprt mutants. However, the time required for and the degree of such changes are quite variable among patients even if they have received the same chemotherapy, suggesting the existence of underlying genetic factor(s). Accordingly, some cancer patients prior to chemotherapy as well as patients with cancer-prone syndrome have been found to show an elevated Mf. Based on the information obtained from somatic cell mutation assays, an individualized chemotherapy should be considered in order to minimize the risk of a second neoplasm.  相似文献   
8.
The melanogenic actions of the melanocortins are mediated by the melanocortin‐1 receptor (MC1R). MC1R is a member of the G‐protein‐coupled receptors (GPCR) superfamily expressed in cutaneous and hair follicle melanocytes. Activation of MC1R by adrenocorticotrophin or α‐melanocyte stimulating hormone is positively coupled to the cAMP signaling pathway and leads to a stimulation of melanogenesis and a switch from the synthesis of pheomelanins to the production of eumelanic pigments. The functional behavior of the MC1R agrees with emerging concepts in GPCR signaling including dimerization, coupling to more than one signaling pathway and a high agonist‐independent constitutive activity accounting for inverse agonism phenomena. In addition, MC1R displays unique properties such as an unusually high number of natural variants often associated with clearly visible phenotypes and the occurrence of endogenous peptide antagonists. Therefore MC1R is an ideal model to study GPCR function. Here we review our current knowledge of MC1R structure and function, with emphasis on information gathered from the analysis of natural variants. We also discuss recent data on the regulation of MC1R function by paracrine and endocrine factors and by external stimuli such as ultraviolet light.  相似文献   
9.
In the present study, we investigated the mechanism by which the antidiabetic drug phenformin increases insulin binding to its receptors in IM-9 human cultured lymphocytes. After a 24-hr preincubation, phenformin induced a twofold increase in specific 125I-insulin binding, and removal of phenformin was followed 6 hr later by a return in binding to control levels. This effect of phenformin on insulin binding was not a consequence of either inhibition of cell growth, changes in cellular cyclic adenosine monophosphate (AMP) levels, or changes in guanosine triphosphate (GTP) content. Since phenformin is known to inhibit various aspects of cellular energy metabolism, the relationship between 125I-insulin binding and energy metabolism in IM-9 cells was investigated. The phenformin-induced increase in insulin binding to IM-9 cells was related to a time- and dose-dependent decrease in ATP levels. Other agents that lowered ATP levels, including antimycin, dinitrophenol, and 2-deoxyglucose, also raised insulin binding. These studies indicated, therefore, that phenformin enhances insulin binding to receptors on IM-9 cells and that this effect on insulin receptors may be related to alterations in metabolic functions that are reflected by a lowering of ATP levels.  相似文献   
10.
Up regulation of the transforming growth factor-beta 1 (TGF-β1) axis has been recognized as a pathogenic event for progression of glomerulosclerosis in diabetic nephropathy. We demonstrate that glomeruli isolated from diabetic rats accumulate up to sixfold more extracellular adenosine than normal rats. Both decreased nucleoside uptake activity by the equilibrative nucleoside transporter 1 and increased AMP hydrolysis contribute to raise extracellular adenosine. Ex vivo assays indicate that activation of the low affinity adenosine A2B receptor subtype (A2BAR) mediates TGF-β1 release from glomeruli of diabetic rats, a pathogenic event that could support progression of glomerulopathy when the bioavailability of adenosine is increased.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号