首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   336篇
  免费   4篇
  国内免费   8篇
  348篇
  2023年   1篇
  2022年   1篇
  2021年   1篇
  2020年   5篇
  2018年   2篇
  2017年   3篇
  2016年   8篇
  2015年   2篇
  2014年   10篇
  2013年   20篇
  2012年   9篇
  2011年   8篇
  2010年   14篇
  2009年   9篇
  2008年   15篇
  2007年   18篇
  2006年   17篇
  2005年   12篇
  2004年   20篇
  2003年   15篇
  2002年   17篇
  2001年   6篇
  2000年   12篇
  1999年   8篇
  1998年   3篇
  1997年   6篇
  1996年   25篇
  1995年   9篇
  1994年   12篇
  1993年   14篇
  1992年   15篇
  1991年   11篇
  1990年   4篇
  1989年   4篇
  1988年   2篇
  1987年   2篇
  1986年   3篇
  1985年   4篇
  1978年   1篇
排序方式: 共有348条查询结果,搜索用时 0 毫秒
1.
The use of entomopathogenic nematodes on cabbage leaves against larvae of the diamondback moth (DBM) Plutella xylostella requires the addition of formulation adjuvants to achieve satisfying control. Without adjuvants nematodes settle in the tank mix of backpack sprayers causing uneven distribution. The polymers arabic and guar gum, alginate and xanthan were used in concentrations between 0.05 and 0.3% to retard sedimentation of Steinernema carpocapsae. Arabic gum had no effect, guar gum prevented sedimentation at 0.3% but the effect dropped significantly at lower concentration. At 0.05%, xanthan prevented nematode sedimentation better than alginate. Deposition of nematodes on the leaves was significantly increased by the addition of any of the polymers. Spraying nematodes on leaves with an inclination of 45° without the addition of any formulation resulted in 70% run-off. Adding 0.2% alginate or xanthan reduced the losses to <20%. The use of a surfactant–polymer formulation significantly reduced defoliation by DBM larvae. Visual examinations provided evidence that nematodes are not ingested by DBM larvae. Invasion of S. carpocapsae is an active process via the anus. The function of the formulation is not to prolong nematode survival, but to provide environmental conditions which enable rapid invasion of the nematodes. Nematode performance was improved by selection of the best surfactant in combination with xanthan and by optimisation of the concentrations of the surfactant Rimulgan® and the polymer xanthan. The best control results were achieved with Rimulgan® at 0.3% together with 0.3% xanthan, causing DBM mortality of >90% at 80% relative humidity and >70% at 60%. The formulation lowered the LC50 from 12 to 1 nematode/larva. The viscosity of the surfactant–polymer formulations correlated well with nematode efficacy, prevention of sedimentation and adherence to the leave. This physical parameter can therefore be recommended for improvement of nematode formulations to be used for foliar application against DBM.  相似文献   
2.
We studied the influence of entomopathogenic nematodes , Steinernema carpocapsae and S. riobravis, on natural populations of plant - parasitic nematodes (PPNs) infesting turfgrass in Georgia and South Carolina . S. riobravis applied at 6 109 infective juveniles (IJs) / acre provided up to 95 - 100% control of the root - knot , Meloidogyne sp ., sting , Belonolaimus longicaudatus, and ring nematode , Criconemella sp ., in Georgia , but S. carpocapsae had no effect . S. riobravis was as effective as the chemical nematicide , Fenamiphos (Nemacur 10G) at 4 weeks after treatment and more effective at 8 weeks after treatment . In South Carolina , both S. riobravis and S. carpocapsae applied at 1 109 IJs / acre provided up to 86 - 100 % control of the root - knot , sting and ring nematodes . Application of 6 109 IJs / acre increased control by only 4 - 14 % over the 1 109 dosage . Possible causes of differences in efficacy of S. carpocapsae at the two sites are discussed . It is concluded that S. riobravis may provide effective , predictable and economical control of PPNs in turfgrass .  相似文献   
3.
Abstract.  1. The fungus Neotyphodium lolii forms a symbiotic relationship with its grass host Lolium perenne (perennial ryegrass). The fungus benefits from access to plant nutrients and photosynthate, whereas the plant benefits from acquired chemical defence against herbivory.
2. This study examined the potential for endophyte-mediated plant defences to influence interactions between fall armyworm Spodoptera frugiperda , and the entomopathogenic nematode Steinernema carpocapsae and clarified biological mechanisms underlying the observations made.
3. In laboratory and greenhouse experiments, S. frugiperda larvae were fed endophytic or non-endophytic L. perenne then exposed to S. carpocapsae or injected with the nematodes' symbiotic bacteria Xenorhabdus nematophila .
4. In all instances, S. frugiperda larvae fed endophyte-infected grass suffered significantly lower mortality than those fed non-endophytic plants. Although larvae fed endophyte-infected grass often had significantly lower biomass than those fed uninfected grass, these differences did not account for altered susceptibility to S. carpocapsae .
5. Endophyte-mediated reductions in herbivore susceptibility to the nematode pathogen represent a herbivore adaptation that effectively turns the tables on both plant and natural enemy by reducing the virulence of the nematodes' symbiotic bacteria while expanding the temporal window of herbivory.  相似文献   
4.
During a survey of entomopathogenic nematodes (EPNs) in the eastern Black Sea region of Turkey in 2009–2012, a steinernematid species was recorded and isolated using the Galleria-baiting method. The isolate was identified as Steinernema kraussei based on its morphological and molecular properties. The analysis of the ITS rDNA sequence placed the Turkish population of S. kraussei in the “feltiae-kraussei” group in the clade that contains different isolates of the species. This is the first record of S. kraussei from Turkey. The efficacy of S. kraussei was tested on Agrotis segetum (Lepidoptera: Noctuidea) larvae at different densities (100, 300, and 500 infective juveniles (IJs) g−1 dry sand ) in laboratory conditions at 25 °C. The highest mortality (98%) was obtained with 500 IJs g−1 dry sand within 7 d after inoculation. Our results indicate that the new isolate is a highly promising biological control agent against A. segetum, one of the most serious soil pests of agricultural area and fruits worldwide.  相似文献   
5.
Endemic, low-virulence parasitic infections are common in nature. Such infections may deplete host resources, which in turn could affect the reproduction of other parasites during co-infection. We aimed to determine whether the reproduction, and therefore transmission potential, of an epidemic parasite was limited by energy costs imposed on the host by an endemic infection. Total lipids, triacylglycerols (TAG) and polar lipids were measured in cockroaches (Blattella germanica) that were fed ad libitum, starved or infected with an endemic parasite, Gregarina blattarum. Reproductive output of an epidemic parasite, Steinernema carpocapsae, was then assessed by counting the number of infective stages emerging from these three host groups. We found both starvation and gregarine infection reduced cockroach lipids, mainly through depletion of TAG. Further, both starvation and G. blattarum infection resulted in reduced emergence of nematode transmission stages. This is, to our knowledge, the first study to demonstrate directly that host resource depletion caused by endemic infection could affect epidemic disease transmission. In view of the ubiquity of endemic infections in nature, future studies of epidemic transmission should take greater account of endemic co-infections.  相似文献   
6.
Monoxenic liquid culture is the most suitable technology for scaling up to industrial production of entomopathogenic nematodes (EPNs); however, the variability of the yield production remains a current problem in the process. The aim of this study was to analyze the parameters and criteria for EPN production in liquid culture based on scientific and technological knowledge from the last two decades. While experimental research has permitted the yield production of Heterorhabditis bacteriophora (362 × 103 infective juveniles [IJs]/ml) and Steinernema carpocapsae (252 × 103 IJs/ml), simultaneously, theoretical approaches have contributed to the understanding of the culture process, based on biological parameters of the bacterium–nematode complex and hydrodynamic and rheological parameters of the complex gas–liquid–solid system. Under this interdisciplinary research approach, bioprocess and biosystem engineering can contribute to design the various control strategies of the process variables, increase the productivity, and reduce the variability that until now distinguishes the in vitro production of EPNs by the liquid culture.  相似文献   
7.
Two hypotheses on the synthesis of the protectants glycerol and trehalose of the infective juveniles (IJs) of Steinernema carpocapsae during osmotic dehydration were tested and utilised to evaluate the function and importance of glycerol on survival of the nematodes during osmotic dehydration. This was achieved by comparing the changes in survival, morphology, behaviour and levels of glycerol, trehalose and permeated compounds of the IJs dehydrated in seven hypertonic solutions at two temperature regimes: (1) 5 °C for 15 days; and (2) 23 °C for 1 day followed by 5 °C for another 14 days. The results substantiate both hypotheses tested: (1) the permeability of the IJs to various compounds, such as sucrose or ethylene glycol, when they are dehydrated in hypertonic solutions of these compounds; and (2) suppression of the synthesis of protectant glycerol but not trehalose when IJs are dehydrated at low temperature. The results also showed that: (1) although trehalose was the preferred dehydration protectant, glycerol played an important role in rapidly balancing the osmotic pressure when IJs were exposed in hypertonic solutions; (2) the presence of glycerol was essential for the IJs to survive and function properly even under moderate osmotic dehydration, especially when IJs were dehydrated in salt solutions; and (3) some exogenous compounds permeated into IJs during osmotic dehydration such as ethylene glycol, may function in the same way as glycerol and significantly improve the survival and function of the IJs. The results indicate that each of the protectants glycerol and trehalose has a specific function and neither is replaceable by the other.  相似文献   
8.
A nematode collected from Diaprepes abbreviatus is identified and described as a new species, Steinernema diaprepesi n. sp. The new species is closely related to S. feltiae, S. glaseri, and S. oregonense and can be distinguished from these species by the following characteristics: Males: Spicule averaging 79 (71-90) µm and spicule shape; D% (distance from anterior end to excretory pore/ esophagus length × 100) about 80; the ratio SW (spicule length/anal body width) about 1.8. Females: Vulva with short, double- flapped epiptygma; tail terminus usually with 5 papillae-like structures. Infective juveniles: Body averaging 1,002 (880-1,133) µm, EP (distance from anterior end to excretory pore) = 74 (66-83) µm; tail length = 83 (65-91) µm, and E% (EP/tail length × 100) = 89.6 (78-114). Lateral field pattern variable, the formula for the arrangement of ridges from head to tail is: 2, 6, 7, 8, 4, 2. The portion with eight ridges is the longest. This new species can be differentiated further from three closest species (S. feltiae, S. glaseri, and S. oregonense) by characteristic sequences of their ITS regions, including sequence lengths, ratios of similarity, composition, and differences in base characters in sequence alignment.  相似文献   
9.
Entomopathogenic nematodes of the Heterorhabditidae and Steinernematidae appear to be capable of long-distance dispersal and local migration. Their transmission strategies include both highly active seek-and-destroy behaviours and ambusher strategies, and they may be sensitive to sex-related factors in their own populations. Their host-finding abilities are poorly understood, despite the fact that these abilities are fundamental to their success as biocontrol agents in soil. Like the vast numbers of exotic hymenopterans and other natural enemies that have been released for biological control over the past century, they may be used in their ecologically competent wild-type form. On the other hand, because they are applied inundatively, they may be tailored, by breeding or transformation, to their intended purpose and to ecological incompetence, improving both their efficacy and their ecological safety.  相似文献   
10.
The effect of different osmolytes on the viability and the effect of osmotic pressure on the induction of a dormant state similar to that caused by a slow desiccation rate were evaluated in the entomopathogenic nematode Steinernema carpocapsae ‘All’. For both experiments, a high-temperature (45°C) assay (HTA) was employed. Exposing fresh infective juveniles to the HTA resulted in a drastic reduction in viability. Using the same assay, the mortality of desiccated nematodes was gradual, showing an enhanced ability to withstand high-temperature conditions. The patterns of decline in viability in the evaporatively dehydrated and the osmotically desiccated nematodes were similar. Most of the salts tested in the screening assay caused high mortality levels among the nematodes within the first 24 h of exposure. In contrast, the nonionic solutes tested did not hamper the viability of the infective juveniles. In these nonionic solutions, all nematodes were completely shrunk after 48 h. Furthermore, 72-h exposure to these solutions resulted in an increase in heat tolerance similar to that of the evaporatively dehydrated nematodes. A substantial increase in heat tolerance was recorded in the treatments with glycerol solutions at concentrations from 2.2 to 3.8 M. A similar effect was obtained by polyethylene glycol (PEG) 300 MW at concentrations ranging from 1.2 to 1.6 M. PEG 600 MW induced enhancement of heat tolerance at a concentration of 0.8 M. A high level of viability was attained among nematodes that were stored for 72 days following a gradual increase in glycerol concentrations. Exposure of these nematodes to 45°C in the HTA resulted in 87.3 ± 4.7 and 49.2 ± 3.9% survival after 4 and 8 h, respectively. Reduction in viability was observed among nematodes that were directly exposed to the glycerol solution over a 19-day storage period. With this treatment, survival levels of 72.7 ± 3.9 and 26.5 ± 4.7% after 4 and 8 h, respectively, were recorded in the HTA. Reduction in viability among nematodes stored in distilled water was noted after 36 days of storage. Evaluation of nematode infectivity by two criteria (insect mortality and invasion rate) indicated that infectivity of nematodes desiccated by gradual osmotic pressure induced by glycerol was similar to that of fresh nematodes after 54 days in storage at 25°C. In comparison, infectivity of nematodes stored in distilled water declined significantly compared to that of fresh nematodes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号