全文获取类型
收费全文 | 219篇 |
免费 | 18篇 |
国内免费 | 5篇 |
专业分类
242篇 |
出版年
2023年 | 1篇 |
2021年 | 6篇 |
2020年 | 4篇 |
2019年 | 1篇 |
2018年 | 4篇 |
2017年 | 9篇 |
2016年 | 7篇 |
2015年 | 6篇 |
2014年 | 6篇 |
2013年 | 11篇 |
2012年 | 3篇 |
2011年 | 4篇 |
2010年 | 3篇 |
2009年 | 3篇 |
2008年 | 5篇 |
2007年 | 7篇 |
2006年 | 3篇 |
2005年 | 5篇 |
2004年 | 7篇 |
2003年 | 6篇 |
2002年 | 6篇 |
2001年 | 9篇 |
2000年 | 4篇 |
1999年 | 8篇 |
1998年 | 6篇 |
1997年 | 10篇 |
1996年 | 7篇 |
1995年 | 5篇 |
1994年 | 8篇 |
1993年 | 6篇 |
1992年 | 7篇 |
1991年 | 6篇 |
1990年 | 3篇 |
1989年 | 6篇 |
1988年 | 5篇 |
1987年 | 7篇 |
1986年 | 4篇 |
1985年 | 7篇 |
1984年 | 2篇 |
1983年 | 1篇 |
1982年 | 1篇 |
1981年 | 4篇 |
1980年 | 4篇 |
1979年 | 5篇 |
1978年 | 6篇 |
1977年 | 1篇 |
1976年 | 2篇 |
1972年 | 1篇 |
排序方式: 共有242条查询结果,搜索用时 15 毫秒
1.
A. Schulz 《Protoplasma》1986,130(1):12-26
Summary 48 hours after interrupting the root stele ofPisum, wound phloem initiated (proximally or distally to the wound) to reconnect the vascular stumps was found to contain some nucleate wound-sieve elements. At the elongating end of an incomplete wound-sieve tube these elements exhibit a sequence of ultrastructural changes as known from protophloem-sieve tubes. Elongation occurs by the addition of newly divided (wound-) sieve-element/companion-cell complexes. In order to dedifferentiate and assume a new specialization formerly quiescent stelar or cortical cells require at least one (mostly more) preliminary division. Companion cells are consequently obligatory sister cells to wound-sieve elements.By reconstruction using serial sections it could be shown that wound-sieve tubes elongate bidirectionally, starting in an early activated procambial cell of the stele. The elongation is directed by the existence of plasmodesmata, preferably when lying in primary pit fields, and by the plane of preceding divisions. Thus, the developing wound-sieve tube can deviate from the damaged bundle and radiate into the cortex as soon as the plane of the preceding divisions is favourable. In the opposite direction, elongating wound-sieve tubes run parallel to pre-existing phloem traces, thus broading their base at the bundle for the deviating part of the wound-sieve tube. Frequently an individual wound-sieve tube is supplemented at the bundle by a further wound-sieve tube which is partly running parallel to it. Both sieve tubes are interlinked with sieve plates by three-poled sieve elements.Ultrastructurally, the developmental changes of nucleate wound-sieve elements follow the known pattern. In spite of its contrasting origin and odd shape a mature wound-sieve element eventually has the same contents as regular sieve elements: sieve-element plastids, mitochondria, stacked ER and small amounts of P-protein within an electronlucent cytoplasm. 相似文献
2.
From the cambial stage onwards, the symplasmic autonomy of sieve element/companion cell complexes (SE/CC-complexes) was followed in stems of Lupinus luteus L. by microinjection techniques. The membrane potential and the symplasmic autonomy of the mature SE/CC-complex was measured in successive internodes. A microelectrode was inserted into SE/CC-complexes or phloem parenchyma cells (PPs) and, after stabilization of the membrane potential, the membrane-impermeant fluorescent dye Lucifer Yellow CH (LYCH) was injected intracellullary. The plasmodesmata of the cambial SE/ CC precursor were gradually shut off at all interfaces beginning at the walls to be transformed into sieve plates. In the course of maturation, symplasmic discontinuity was maintained at the longitudinal walls of the complex. In the transverse walls of the SE, wide sieve pores were formed giving rise to longitudinal multicellular symplasmic domains of SE/CC-complexes. Symplasmic isolation of the files of mature SE/CC-complexes was demonstrated in several ways: (i) the membrane potential of the SE/CC-complexes (between -100 mV and -130 mV) was consistently more negative than that of the PPs (between-50 and -100 mV), (ii) No exchange of LYCH was observed between SE/CC-complexes and the PPs. Lucifer Yellow CH injected into the SEs exclusively moved to the associated CCs and to other SE/CC-complexes whereas LYCH injected into the PPs was only displaced to other PPs. (iii) The electrical coupling ratio between adjacent PPs was ten times higher than that between SE/CC-complex and PP. A gradient in the membrane potential of the SE/CC-complexes along the stem was not conclusively demonstrated.Abbreviations LYCH
Lucifer Yellow CH
-
membrane potential
- PMF
proton-motive force
- PP
phloem parenchyma cell
- SE/CC-complex
sieve element/companion cell complex
- SR-G
sulphorhodamine G 相似文献
3.
Summary Sperm cells of pollen tubes grown both in vivo and in vitro form a male germ unit. Extensions from both sperm cells of each pollen tube are closely associated with the tube nucleus. A high yield (2.7 × 104. 20 mg–1 pollen grains germinated) of intact sperm cells was obtained following release by osmotic shock from pollen tubes grown in vitro. Structural integrity of isolated sperm was maintained by isolation at low temperature in an osmotically balanced medium. At 4° C many isolated sperm pairs were still enclosed within the pollentube inner plasma membrane. Sperm cells not enclosed within this membrane no longer remained connected as a pair. During isolation vesicles formed on the sperm cell surface from disruption of the fibrillar components bridging the periplasmic space. Both in the pollen tube and after isolation the sperm nucleus is in close association with at least one region of the sperm plasma membrane. Sperm isolated at room temperature showed the presence of nucleopores, and nuclei were euchromatic, instead of heterochromatic as in intact sperm in the pollen tube. 相似文献
4.
Growth and development of conifer pollen tubes 总被引:1,自引:0,他引:1
Conifer pollen tubes are an important but underused experimental system in plant biology. They represent a major evolutionary
step in male gametophyte development as an intermediate form between the haustorial pollen tubes of cycads and Ginkgo and the structurally reduced and faster growing pollen tubes of flowering plants. Conifer pollen grains are available in
large quantities, most can be stored for several years, and they grow very well in culture. The study of pollen tube growth
and development furthers our understanding of conifer reproduction and contributes towards our ability to improve on their
productivity. This review covers taxonomy and morphology to cell, developmental, and molecular biology. It explores recent
advances in research on conifer pollen and pollen tubes in vivo, focusing on pollen wall structure, male gametophyte development
within the pollen wall, pollination mechanisms, pollen tube growth and development, and programmed cell death. It also explores
recent research in vitro, including the cellular mechanisms underlying pollen tube elongation, in vitro fertilization, genetic
transformation and gene expression, and pine pollen tube proteomics. With the ongoing sequencing of the Pinus taeda genome in several labs, we expect the use of conifer pollen tubes as an experimental system to increase in the next decade. 相似文献
5.
An arctic river was fertilized continuously through the ice-free season with phosphoric acid beginning in 1983. The epilithic
diatom community increased in biomass in the first two years in response to the added limiting nutrient (Peterson et al., 1983). The diatom community switched from one dominated by Hannea arcus to one dominated by species of Achnanthes and Cymbella. The immediate responses to the P-addition were decreases in both
the Shannon diversity and evenness indices. By the second year, the community diversity increased downriver reaching maximal
species richness (110–127 spp). In 1985–1987, the epilithic algal biomass decreased an order of magnitude with both whole-river
PO4 (1985, 1987) and PO4 + NH4 addition (1986). In the 5th summer of fertilization, the reduction in biomass was clearly caused by a numerical increase
of grazing, refugia-building chironomids (Orthocladiinae, primarily) (Gibeau, 1991; Gibeau, Miller, Hershey, in prep.). We
assume the algal biomass reduction in the 3rd and 4th years was similarly caused by grazers with a two year time lag in the
numerical response of these monovoltine species. The evenness of the community increased in 1986 as if it might have been
grazed; however the number of immigrants was reduced. The community became dominated by Eunotia, Cymbella and Achnanthes,
species either fast growing or more prostrate, as the erect species of Hannea Diatoma, and Fragillaria declined. A detrended
correspondence analysis of the temporal and spatial diatom samples in species space (186 spp.) showed that the largest variation
in the community was between years and less variation was associated with river fertilization.
Samples from bioassay tubes run by Peterson et al. (1983) in the Kuparuk River showed P and N + P limitation as found in the river in 1983–84. Like the river samples, the
largest change in the diatom community occurred between 15 and 25 day samples, more than that induced by fertilization. Diatoms
sampled from all treatments taken at day 25 were more similar to one another than those sampled at day 15. Diatoms colonizing
glass slides used in the bioassay tubes were dominated by Achnanthes linearis and Cymbella minuta. Of the 84 species found in bioassays, 26 species were present in all river samples for 4 years. Differences in the communities
discriminated by multivariate methods were cause by changes in rare species and abundance patterns of common species. 相似文献
6.
7.
Ultrastructures of sieve elements of secondary phloem of 1–2 year old branchlet of tropical deciduous tree Dalbegia odorifera T. Chen growing on Hainan Island were studied under transmission electron microscope and a comparation was made between the sieve elements in leaf-bearing and leaf-absent period. During the leaf-bearing period, there was a tailed spindleshaped P-protein body in each mature sieve element. The main part of the P-protein body con sisted of a disordered fine fiber mass with two crystalline tails. The sieve elements had horizontal end walls with simple sieve plate. The inner layers of the wall near the sieve plate appeared intumescent, protruding into the sieve element lumen. During the leaf-absent period, a functional phloem remained about the same thickness as that during the leaf-bearing period. The sieve elements in the leaf-absent period contained normal protoplasts and the P-protein and the sieve plate pores had the same structures as those during the leaf-bearing period. More starch grains and vesicles were found in sieve elements in the leaf-absent period. 相似文献
8.
利用透射电镜技术研究了生长在海南岛的热带落叶树降香黄檀(Dalbegia odorifera T.Chen)1—2年生枝条着叶期和无叶期次生韧皮部筛分子的超微结构,并就这两个时期的筛分子进行了比较。着叶期每个成熟筛分子内有一个带尾的纺锤形P-蛋白质体,主体由稠密而散乱的P-蛋白质细纤维组成,尾部呈结晶状;筛分子具有横向端壁和单筛板,在邻近筛板处,细胞壁向筛分子腔内形成明显的突起。无叶期仍然保持着与着叶期大致相同厚度的有功能韧皮部,筛分子具有正常的原生质体,P-蛋白质和筛板孔的结构也与着叶期的相同,但筛分子内有较多的淀粉粒和囊泡。 相似文献
9.
Abstract The time course of loading and transport of assimilate in sunflower leaves was examined by pulse labelling with 14CO2, followed by freeze drying or freeze substitution, and dry autoradiography at both low and high resolution. The five classes of veins, V1-V5 (V5 being smallest), show a division of function: V5 and V4 are engaged in loading and short distance transport; V3 to V1, in long distance translocation. The first high concentration of 14C is found in two or three phloem parenchyma cells (intermediary cells) of V5 and V4 veins. The sieve elements of V5 and V4 veins do not show comparable concentrations of 14C at any time. Recently assimilated 14C is transported by the intermediary cells for distances of about 0.5 mm to the V3 veins. In V3 to V1 veins translocation is in the sieve tubes. Transport in V5 and V4 veins is in two directions, that in V3 to V1, in one direction towards the petiole. The high concentration of 14C formed in the intermediary cells does not increase further as the assimilate moves to the sieve tubes of the V3 veins, and so is probably the origin of the gradient that drives translocation. 相似文献
10.
M. D. Lazzaro 《Protoplasma》1996,194(3-4):186-194
Summary Actin microfilaments form a dense network within pollen tubes of the gymnosperm Norway spruce (Picea abies). Microfilaments emanate from within the pollen grain and form long, branching arrays passing through the aperture and down the length of the pollen tube to the tip. Pollen tubes are densely packed with large amyloplasts, which are surrounded by branching microfilament bundles. The vegetative nucleus is suspended within the elongating pollen tube within a complex array of microfilaments oriented both parallel to and perpendicular with the growing axis. Microfilament bundles branch out along the nuclear surface, and some filaments terminate on or emanate from the surface. Microfilaments in the pollen tube tip form a 6 m thick, dense, uniform layer beneath the plasma membrane. This layer ensheathes an actin depleted core which contains cytoplasm and organelles, including small amyloplasts, and extends back 36 m from the tip. Behind the core region, the distinct actin layer is absent as microfilaments are present throughout the pollen tube. Organelle zonation is not always maintained in these conifer pollen tubes. Large amyloplasts will fill the pollen tube up to the growing tip, while the distinct layer of microfilaments and cytoplasm beneath the plasma membrane is maintained. The distinctive microfilament arrangement in the pollen tube tips of this conifer is similar to that seen in tip growth in fungi, ferns and mosses, but has not been reported previously in seed plants. 相似文献