首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   233篇
  免费   15篇
  国内免费   15篇
  2023年   1篇
  2022年   1篇
  2021年   4篇
  2020年   2篇
  2019年   3篇
  2018年   4篇
  2017年   1篇
  2016年   2篇
  2015年   5篇
  2014年   9篇
  2013年   8篇
  2012年   3篇
  2011年   6篇
  2010年   4篇
  2009年   6篇
  2008年   20篇
  2007年   14篇
  2006年   16篇
  2005年   20篇
  2004年   10篇
  2003年   11篇
  2002年   11篇
  2001年   11篇
  2000年   7篇
  1999年   6篇
  1998年   10篇
  1997年   5篇
  1996年   4篇
  1995年   9篇
  1994年   5篇
  1993年   4篇
  1992年   9篇
  1991年   4篇
  1990年   1篇
  1989年   1篇
  1988年   7篇
  1987年   2篇
  1986年   3篇
  1985年   3篇
  1984年   5篇
  1982年   1篇
  1981年   1篇
  1980年   3篇
  1973年   1篇
排序方式: 共有263条查询结果,搜索用时 62 毫秒
1.
2.
K. Katou  T. Taura  M. Furumoto 《Protoplasma》1987,140(2-3):123-132
Summary The mechanism of water movement across roots is, as yet, not well understood. Some workable black box theories have already been proposed. They, however, assumed unrealistic cell membranes with low values of , or were based on a poor anatomical knowledge of roots. The role of root stele in solute and water transport seems to be especially uncertain. An attempted explanation of the nature of root exudation and root pressure by applying the apoplast canal theory (Katou andFurumoto 1986 a, b) to transport in the root stele is given. The canal equations are solved for boundary conditions based on anatomical and physiological knowledge of the root stele. It is found that the symplast cell membrane, cell wall and net solute transport into the wall apoplast are the essential constituents of the canal system. Numerical analysis shows that the canal system enables the coupled transport of solutes and water into a xylem vessel, and the development of root pressure beyond the level predicted by the osmotic potential difference between the ambient medium and the exudate. Observations on root exudation and root pressure previously reported seem to be explained quite well. It is concluded that the movement of water in the root stele although apparently active is essentially osmotic.Abbreviations J v ex volume exudation per root surface - J0 non-osmotic exudation - Lr overall radial hydraulic conductivity of an excised root - reflection coefficient - Cs difference in the osmotic concentration between the bathing medium and the exudate - R gas constant - T absolute temperature - CK molar concentration of K+ - CCl molar concentration of Cl - Cj molar concentration of ion species j - Pj membrane permeability of ion j - zj valence of ion j - F Faraday constant - Vix intracellular electric potential with reference to the canal  相似文献   
3.
4.
Summary A pot experiment with lettuce involving three N forms each at six application levels, showed that lettuce can be grown satisfactorily with a very low nitrate content when supplied with ammonium sulphate and a nitrification inhibitor. For plants growing on nitrate N, the optimum midrib sap nitrate concentration as maturity approached was about 1400 mg/1 NO3-N. Large losses of mineral N were observed from the peat medium, even in the absence of plants. A relationship is presented which would enable a lettuce grower to estimate whole-shoot nitrate concentration from a quick test of midrib sapi.e. NO3-N (mg/kg in fresh shoot) =0.14×NO3-N (mg/l in sap). Tipburn was worst at intermediate levels of applied N, and was less serious with pure ammonium nutrition than with nitrate.  相似文献   
5.
Summary A pot experiment withAlnus incana (L.) Moench growing in sand was set up to compare the amounts of nitrogen released from plants shoot litter with that released below ground as root litter and/or root exudation. No nitrogen fixation by free-living microorganisms was found in the sand and the increased nitrogen content of the plant + soil system was therefore due to nitrogen fixation byFrankia in the alder root-nodules. Most of the nitrogen released from the plants was in the nitrogen-rich leaf and other shoot litter. Only small amounts of nitrogen were found in the drainage water from the pots and were recorded as increased nitrogen content of the sand.  相似文献   
6.
Studies were undertaken to evaluate the effects of mechanical impedance on root exudation by maize (Zea mays L., var Dea) and to examine the importance of these effects in relation to the stage of plant development. Plants were grown under sterile and hydroponic conditions. Mechanical impedance was simulated using glass beads of 1 mm diameter. This treatment was compared with a control without beads. Results demonstrated that plant growth was influenced by mechanical impedance. Mechanical impedance markedly affected the growth of the shoot, whether this was measured as leaf area or total dry matter. Besides increasing root/shoot biomass ratios, mechanical impedances also stimulated root exudation of organic and inorganic compounds. Stressed plants lost more nitrogenous compounds than control plants. Otherwise, the percentage of released carbon decreased. Depending on the developmental stage of the plant, there was a large variation in the magnitude and time course on mechanical impedance effects. The effects of mechanical impedance persist and accentuate with time.  相似文献   
7.
Zoe G. Cardon 《Plant and Soil》1995,187(2):277-288
Atmospheric CO2 concentrations can influence ecosystem carbon storage through net primary production (NPP), soil carbon storage, or both. In assessing the potential for carbon storage in terrestrial ecosystems under elevated CO2, both NPP and processing of soil organic matter (SOM), as well as the multiple links between them, must be examined. Within this context, both the quantity and quality of carbon flux from roots to soil are important, since roots produce specialized compounds that enhance nutrient acquisition (affecting NPP), and since the flux of organic compounds from roots to soil fuels soil microbial activity (affecting processing of SOM).From the perspective of root physiology, a technique is described which uses genetically engineered bacteria to detect the distribution and amount of flux of particular compounds from single roots to non-sterile soils. Other experiments from several labs are noted which explore effects of elevated CO2 on root acid phosphatase, phosphomonoesterase, and citrate production, all associated with phosphorus nutrition. From a soil perspective, effects of elevated CO2 on the processing of SOM developed under a C4 grassland but planted with C3 California grassland species were examined under low (unamended) and high (amended with 20 g m–2 NPK) nutrients; measurements of soil atmosphere 13C combined with soil respiration rates show that during vegetative growth in February, elevated CO2 decreased respiration of carbon from C4 SOM in high nutrient soils but not in unamended soils.This emphasis on the impacts of carbon loss from roots on both NPP and SOM processing will be essential to understanding terrestrial ecosystem carbon storage under changing atmospheric CO2 concentrations.Abbreviations SOM soil organic matter - NPP net primary productivity - NEP net ecosystem productivity - PNPP p-nitrophenyl phosphate  相似文献   
8.
Rhizodeposition under ambient and elevated CO2 levels   总被引:1,自引:0,他引:1  
As global CO2 levels rise, can soils store more carbon and so buffer atmospheric CO2 levels? Answering this question requires a knowledge of the rates of C inputs to soil and of CO2 outputs via decomposition. Below-ground inputs from roots are a major component of the C flow into soils but are still poorly understood. In this article, new techniques for measuring rhizodeposition are reviewed and discussed and the need for cross-comparisons between methods is identified. One component of rhizodeposition, root exudation, is examined in more detail and evidence is presented which suggests that current estimates of exudate flow into soils are incorrect. A mechanistic mathematical model is used to explore how exudate flows might change under elevated CO2.  相似文献   
9.
10.
Aluminum tolerance was assessed in the moderately Al-tolerant wheat (Triticum aestivum L.) cultivar Chinese Spring and a set of ditelosomic lines derived from Chinese Spring. Three ditelosomic lines lacking chromosome arms 4DL, 5AS and 7AS, respectively, exhibited decreased Al tolerance relative to the euploid parent Chinese Spring based on reduced root growth in Al-containing solutions. The physiological basis of the reduced Al tolerance was investigated. Measurements by inductively coupled argon plasma mass spectroscopy of root apical Al accumulation demonstrated that two of these three lines had a decreased ability to exclude Al from the root apex, the site of Al phytotoxicity. As Al-induced malate exudation has been suggested to be an important physiological mechanism of Al tolerance in wheat, this parameter was quantified and malate exudation was shown to be smaller in all three deletion lines compared with Chinese Spring. These results suggest that the decreased Al tolerance in at least two of the three ditelosomic lines is due to the loss of different genes independently influencing a single Al-tolerance mechanism, rather than to the loss of genes encoding alternative Al-tolerance mechanisms. Received: 3 July 2000 / Accepted: 9 August 2000  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号