首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10篇
  免费   0篇
  10篇
  2020年   1篇
  2018年   1篇
  2014年   2篇
  2011年   1篇
  2007年   1篇
  2005年   1篇
  1995年   1篇
  1989年   1篇
  1980年   1篇
排序方式: 共有10条查询结果,搜索用时 11 毫秒
1
1.
In field experiments, clones of Norway spruce [Picea abies (L.) Karst.] showed different degrees of resistance against pathogenic fungi inoculated into the bark that correlate with differences in polyphenolic parenchyma (PP) cells of the bark. Cells of spruce callus cultures, particularly towards the callus surface, resemble PP cells and this study looks at changes in callus cells during infection and the relative resistance of cultures from clones of low (weak) or high (strong) resistance to fungal infection. Callus cultures, initiated from trees with different resistance, were co-inoculated with Ceratocystis polonica (Siem.) C. Moreau and Heterobasidion annosum (Fr.) Bref. Callus cells from strong clones resemble PP cells of bark tissue from strong clones, having more polyphenolic bodies, while callus cells from weak clones are more similar to PP cells from those clones, which have less extensive phenolic bodies. Callus cultures from trees with weak resistance were more quickly overgrown by both species of pathogenic fungi than cultures from trees with strong resistance. Callus cells of infected cultures showed changes similar to activated PP cells of bark, including enhanced accumulation of polyphenolics. Phenolic bodies were more numerous and more extensive (larger and denser) in callus cells of strong versus weak clones under all conditions. Thus, callus cells may perform similar functions in defense as PP cells in the bark. Callus from trees of varying resistance seem to reflect the relative resistance of the trees from which they are derived, and this study indicates that some mechanisms of resistance can be studied using callus from trees of different resistance.  相似文献   
2.
Isolating quality DNA from tissues/cells presents a variety of problems in particular when plants are used as the source material. The specific characteristics of plants like the presence of rigid polysaccharide cell wall, pigments, chemical heterogeneity of secondary metabolites found in diverse species of plants, etc., necessitate special consideration and skill during isolation procedure. Until now, numerous protocols have been published for the purpose, but none is found to be universally applicable. Various factors starting from the selection of source material to the concentration of metabolites present in the plant decide the course of the isolation procedure. The present review is an update of various methods used for plant genomic DNA isolation, and it epitomizes the various problems faced and the solutions made to contend with them during DNA isolation from plant cells.  相似文献   
3.
Stevia rebaudiana (S. rebaudiana) is the most important therapeutic plant species and has been accepted as such worldwide. It has a tendency to accumulate steviol glycosides, which are 300 times sweeter than marketable sugar. Recently, diabetic patients commonly use this plant as a sugar substitute for sweet taste. In the present study, the effects of different spectral lights were investigated on biomass accumulation and production of secondary metabolites in adventitious root cultures of S. rebaudiana. For callus development, leaf explants were excised from seed-derived plantlets and inoculated on a Murashige and Skoog (MS) medium containing the combination of 2,4-dichlorophenoxy acetic acid (2, 4-D, 2.0 mg/l) and 6-benzyladenine (BA, 2.0 mg/l), while 0.5 mg/l naphthalene acetic acid (NAA) was used for adventitious root culture. Adventitious root cultures were exposed to different spectral lights (blue, green, violet, red and yellow) for a 30-day period. White light was used as control. The growth kinetics was studied for 30 days with 3-day intervals. In this study, the violet light showed the maximum accumulation of fresh biomass (2.495 g/flask) as compared to control (1.63 g/flask), while red light showed growth inhibition (1.025 g/flask) as compared to control. The blue light enhanced the highest accumulation of phenolic content (TPC; 6.56 mg GAE/g DW), total phenolic production (TPP; 101 mg/flask) as compared to control (5.44 mg GAE/g DW; 82.2 mg GAE/g DW), and exhibited a strong correlation with dry biomass. Blue light also improved the accumulation of total flavonoid content (TFC; 4.33 mg RE/g DW) and total flavonoid production (TFP; 65 mg/flask) as compared to control. The violet light showed the highest DPPH inhibition (79.72%), while the lowest antioxidant activity was observed for control roots (73.81%). Hence, we concluded that the application of spectral lights is an auspicious strategy for the enhancement of the required antioxidant secondary metabolites in adventitious root cultures of S. rebaudiana and of other medicinal plants.  相似文献   
4.
Ribulose, 1,5-bisphosphate carboxylase has been isolated from leaves of glanded cotton, (Gossypium hirsutum L. cv. TM1), by techniques described. A yield exceeding 4.5 mg enzyme per gram leaf tissue has been obtained by utilizing a sodium homogenizing buffer without the addition of any reducing agent. Sodium dodecylsulfate gel electrophoresis of the enzyme shows the fraction to be relatively free of contaminants. Enzymic assays of the isolate give a specific activity of 1.1 μmol CO2 fixed (min-mg protein)?1 at 30°C.  相似文献   
5.
Liquid chromatography–mass spectrometry (LC–MS) is a highly sensitive tool for the analysis of polyphenolic compounds in complex food and beverage matrices. However, the high degree of isomerism among polyphenols in general often complicates this approach, especially for identification of novel compounds. Here, we explore the utility of mild acid-catalyzed deuterium (MACD) labeling via electrophilic aromatic substitution as a complementary method for informing polyphenolic compound structure elucidation. To prevent hydrolysis of acid-labile glycosidic linkages, optimal reaction conditions that maximize regioselective hydrogen/deuterium (H/D) exchange of aromatic protons while preserving compound integrity were characterized (60 °C, pH 3.0, 72 h). Under these conditions, standard compounds varying in the number and position of hydroxyl, glycosyl, and methyl groups about their aromatic core structure produced distinguishable H/D exchange patterns. The applicability of this method for the analysis of complex mixtures was demonstrated in red wine where the extent of deuterium exchange, together with accurate mass information, led to the putative identification of an unknown compound. The identification was further supported by tandem MS (MS/MS) data, which matched conclusively to the same compound in the Metlin LC–MS/MS library. With the capacity to discriminate between select isomeric forms, MACD labeling provides structural information that complements accurate mass and tandem mass spectral measurements for informing the identification of polyphenolics by MS.  相似文献   
6.
Phytochemical composition, in vitro antioxidant and antiproliferative activity against HepG2 cells were studied in the kernels of apricot cultivars grown in the northern areas of Pakistan.Relatively, the kernel of Habbi cultivar/AP-12 depicted significant potential to scavenge DPPH and ABTS+ free radicals as well as oxygen radical absorbance capacity along with highest contents of total flavonoids, phenolics, chlorogenic and syringic acids on dry weight basis. The average concentration of quercetin ranged 0.072–1.343 mg/100 g, and of EGCG from 0.713 to 6.521 mg/100 g with maximum concentration in Hulappa/AP-3 and Kho Chali-Khatta 3/AP-17, respectively. Amygdalin content was highest (1145 mg/100 g) in the kernel of Balaani/AP-14. Highest inhibition of HepG2 cells was found in the kernel of Waflu Chuli/AP-9 (EC50 = 15.70 ± 3.77 mg/mL). The PCA showed significant contributions of polyphenols and flavonoids towards biochemical assays, while CA revealed similarities and associations among various cultivars. Our study revealed that Habbi, Waflu Chuli, Thukdeena and Balaani kernels are rich sources of bioactive compounds and possess significant antioxidant and anticancer activity and can contribute considerably in the prevention and treatment of chronic health disorders.  相似文献   
7.
Salvia miltiorrhiza (danshen) is widely used for the clinical treatment of cerebral ischemia and cardiovascular diseases. Its diverse molecular makeup of simple and poly hydroxycinnamic acids and diterpenoid quinones are also associated with its beneficial health effects such as improved cognitive deficits in mice, protection of neuronal cells, prevention of amyloid fibril formation and preformed amyloid fibril disaggregation related to Alzheimer’s disease. Whilst the in vitro studies have therapeutic promise, the anti-dementia effect/impact of danshen however depends on its absorbed constituents and pharmacokinetic properties. Both the water and lipid danshen fractions have been shown to have low oral bioavailability and at physiological pH, the polyphenolic carboxylate anions are not brain permeable. To tap into the many neuroprotective and other biological benefits of danshen, the key challenge resides in developing danshen nanopharmaceuticals, semi-synthetic pro-drug forms of its constituents to improve its biocompatability, that is, absorption, circulation in bloodstream and optimization of BBB permeability.  相似文献   
8.
In this review, we provide an overview of the role of glucosinolates and other phytochemical compounds present in the Brassicaceae in relation to plant protection and human health. Current knowledge of the factors that influence phytochemical content and profile in the Brassicaceae is also summarized and multi-factorial approaches are briefly discussed. Variation in agronomic conditions (plant species, cultivar, developmental stage, plant organ, plant competition, fertilization, pH), season, climatic factors, water availability, light (intensity, quality, duration) and CO2 are known to significantly affect content and profile of phytochemicals. Phytochemicals such as the glucosinolates and leaf surface waxes play an important role in interactions with pests and pathogens. Factors that affect production of phytochemicals are important when designing plant protection strategies that exploit these compounds to minimize crop damage caused by plant pests and pathogens. Brassicaceous plants are consumed increasingly for possible health benefits, for example, glucosinolate-derived effects on degenerative diseases such as cancer, cardiovascular and neurodegenerative diseases. Thus, factors influencing phytochemical content and profile in the production of brassicaceous plants are worth considering both for plant and human health. Even though it is known that factors that influence phytochemical content and profile may interact, studies of plant compounds were, until recently, restricted by methods allowing only a reductionistic approach. It is now possible to design multi-factorial experiments that simulate their combined effects. This will provide important information to ecologists, plant breeders and agronomists.  相似文献   
9.
Phenolics in marine brown algae have been thought to follow a latitudinal gradient with high phenolic species in high latitudes and low phenolic species in low latitudes. However, tropical brown algae from the western Caribbean have been shown to be high in phlorotannin concentration, indicating that latitude alone is not a reasonable predictor of marine plant phenolic concentrations. This study shows that the range of high phenolic phaeophytes is not limited to the western Caribbean but encompasses the western tropical Atlantic, including Bermuda and the Caribbean, where algal phlorotannin concentrations can be as high as 25% dry weight (DW). Assimilation efficiencies (AEs) of phenolic-rich and phenolic-poor plants were examined in three tropical marine herbivores (the parrotfish, Sparisoma radians, and the brachyuran crab, Mithrax sculptus, from Belize and the parrotfish, Sparisoma chrysopterum, from Bermuda). AEs of phenolic-rich food by each of the three herbivore species were uniformly high, suggesting that high plant phenolic concentrations did not affect AEs in these species. This is in contrast to some temperate marine herbivores where phenolic concentrations of 10% DW have been shown to drastically reduce AE. The apparent contradiction is discussed in light of the effects of specific herbivore gut characteristics on successful herbivory of high phenolic brown algae.  相似文献   
10.
Summary Polyphloroglucinol phenolics are the best known example of chemical deterrents against herbivores in temperate marine systems. However, most of the research on these compounds has been done in North America, where phenolic levels in algae are often low. I show here that algae in the Orders Fucales and Laminariales in temperate Australia and New Zealand typically contain very high levels of polyphenolics-much higher than species in these orders in North America. The median value for the distribution of mean phenolic levels for 25 North American species is 1.33% total phenolics (dry wt.); for 37 Australasian species, the median is 6.20%. Significant spatial, temporal, and intraplant variation in phenolic content occurs in a number of species in Australasia, but this does not significantly alter my major conclusion. Phenolic levels in drift algae (an important food source for some herbivores) detached for up to two weeks are also not significantly different from living, attached plants. Many species in the Fucales in Australasia also contain non-polyphenolic secondary metabolites that are not found in North American species. Thus herbivores in Australasia face greater amounts, and a greater range,of putative chemical defenses in brown algae than do herbivores in similar systems in North America. Any general theory for the evolution of marine plant/herbivore interactions must take into account such broad-scale biogeographical (and taxonomic) patterns.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号