首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1348篇
  免费   8篇
  国内免费   1篇
  1357篇
  2022年   2篇
  2021年   2篇
  2019年   12篇
  2018年   22篇
  2017年   3篇
  2016年   2篇
  2015年   4篇
  2014年   39篇
  2013年   11篇
  2012年   13篇
  2011年   16篇
  2010年   21篇
  2009年   34篇
  2008年   36篇
  2007年   81篇
  2006年   30篇
  2005年   79篇
  2004年   33篇
  2003年   34篇
  2002年   39篇
  2001年   22篇
  2000年   36篇
  1999年   18篇
  1998年   25篇
  1997年   32篇
  1996年   40篇
  1995年   53篇
  1994年   37篇
  1993年   63篇
  1992年   41篇
  1991年   22篇
  1990年   22篇
  1989年   26篇
  1988年   26篇
  1987年   17篇
  1986年   12篇
  1985年   6篇
  1984年   115篇
  1983年   49篇
  1982年   42篇
  1981年   41篇
  1980年   45篇
  1979年   33篇
  1978年   8篇
  1977年   2篇
  1976年   5篇
  1975年   2篇
  1974年   2篇
  1972年   2篇
排序方式: 共有1357条查询结果,搜索用时 15 毫秒
1.
Manganese in the oxygen-evolving complex is a physiological electron donor to Photosystem II. PS II depleted of manganese may oxidize exogenous reductants including benzidine and Mn2+. Using flash photolysis with electron spin resonance detection, we examined the room-temperature reaction kinetics of these reductants with Yz +, the tyrosine radical formed in PS II membranes under illumination. Kinetics were measured with membranes that did or did not contain the 33 kDa extrinsic polypeptide of PS II, whose presence had no effect on the reaction kinetics with either reductant. The rate of Yz + reduction by benzidine was a linear function of benzidine concentration. The rate of Yz + reduction by Mn2+ at pH 6 increased linearly at low Mn2+ concentrations and reached a maximum at the Mn2+ concentrations equal to several times the reaction center concentration. The rate was inhibited by K+, Ca2+ and Mg2+. These data are described by a model in which negative charge on the membrane causes a local increase in the cation concentration. The rate of Yz + reduction at pH 7.5 was biphasic with a fast 400 s phase that suggests binding of Mn2+ near Yz + at a site that may be one of the native manganese binding sites.Abbreviations PS II Photosystem II - YD tyrosine residue in Photosystem II that gives rise to the stable Signal II EPR spectrum - Yz tyrosine residue in Photosystem II that mediates electron transfer between the reaction center chlorophyll and the site of water oxidation - ESR electron spin resonance - DPC diphenylcarbazide - DCIP dichlorophenolindophenol  相似文献   
2.
cDNA clones encoding two Photosystem I subunits of Chlamydomonas reinhardtii with apparent molecular masses of 18 and 11 kDa (thylakoid polypeptides 21 and 30; P21 and P30 respectively) were isolated using oligonucleotides, the sequences of which were deduced from the N-terminal amino acid sequences of the proteins. The cDNAs were sequenced and used to probe Southern and Northern blots. The Southern blot analysis indicates that both proteins are encoded by single-copy genes. The mRNA sizes of the two components are 1400 and 740 nucleotides, respectively. Comparison between the open reading frames of the cDNAs and the N-terminal amino acid sequences of the proteins indicates that the molecular masses of the mature proteins are 17.9 (P21) and 8.1 kDa (P30). Analysis of the deduced protein sequences predicts that both subunits are extrinsic membrane proteins with net positive charges. The amino acid sequences of the transit peptides suggest that P21 and P30 are routed towards the lumenal and stromal sides of the thylakoid membranes, respectively.Abbreviations OEE1, 2 and 3 oxygen evolution enhancer proteins 1, 2 and 3 - Rubisco ribulose bisphosphate carboxylase/oxygenase - PS photosystem - P21 and P30 C. reinhardtii thylakoid polypeptides 21 and 30  相似文献   
3.
Two cDNA clones for the barley photosystem I polypeptide which migrates with an apparent molecular mass of 9.5 kDa on SDS-polyacrylamide gels have been isolated using antibodies and an oligonucleotide probe. The determined N-terminal amino acid sequence for the mature polypeptide confirms the identification of the clones. The 644 base-pair sequence of one of the clones contains one large open reading frame coding for a 14 882 Da precursor polypeptide. The molecular mass of the mature polypeptide is 10 193 Da. The hydropathy plot of the polypeptide shows one membrane-spanning region with a predicted -helix secondary structure. The gene for the 9.5 kDa polypeptide has been designated PsaH.  相似文献   
4.
We present here an improvement to the analysis of oxygen evolution with four sigma coefficients (4-S) by computing z, the sum of the S-state probabilities, which was introduced earlier (Delrieu and Rosengard 1987, Biochim Biophys Acta 892: 163–171). We demonstrate that z is equal to the ratio of two consecutive Mean Y (the estimation of the steady state oxygen production based on local properties) found by three sigma analysis. The quantity z is useful for computing double-hits, and for showing the inactivation/activation processes of PS II complexes. Three sigma analysis assumes z=1 exactly; since this is not verified, it is argued that four sigma analysis is closer to the real workings of the water oxidizing complex. Oxygen evolution can then be interpreted in the frame of a modified Kok's model where the sum of the probabilities equals z. We therefore suggest that the closer fitting of four sigma analysis to oxygen production data is not simply due to an extra, unnecessary variable, but to the fact that PS II complexes can be inactivated and reactivated under flashing light. Finally, in order to facilitate the use of four sigma analysis, a computer program is made available upon request.  相似文献   
5.
A model is presented describing the relationship between chlorophyll fluorescence quenching and photoinhibition of Photosystem (PS) II-dependent electron transport in chloroplasts. The model is based on the hypothesis that excess light creates a population of inhibited PS II units in the thylakoids. Those units are supposed to posses photochemically inactive reaction centers which convert excitation energy to heat and thereby quench variable fluorescence. If predominant photoinhibition of PS II and cooperativity in energy transfer between inhibited and active units are presumed, a quasi-linear correlation between PS II activity and the ratio of variable to maximum fluorescence, FVFM, is obtained. However, the simulation does not result in an inherent linearity of the relationship between quantum yield of PS II and FVFM ratio. The model is used to fit experimental data on photoinhibited isolated chloroplasts. Results are discussed in view of current hypotheses of photoinhibition.Abbreviations FM maximum total fluorescence - F0 initial fluorescence - FV maximum variable fluorescence - PS Photosystem - QA, QB primary and secondary electron acceptors of Photosystem II  相似文献   
6.
C. Preston  R.J. Pace   《BBA》1985,810(3):388-391
A combined single-turnover flash and 35Cl NMR technique has been used to monitor S-state dependence of Cl binding to PS-II particles derived from mangrove (Avicennia marina). No detectable high-affinity binding was found to particles in the S0 and S1 states, but binding with an affinity comparable to that which activates O2 evolution was found in the S2 and S3 states.  相似文献   
7.
The rise time, of Signal IIf and the decay time of P-680+ have been measured kinetically as a function of pH by using EPR. The Photosystem II-enriched preparations which were used as samples were derived from spinach chloroplasts, and they evolved oxygen before Tris washing. The onset kinetics of Signal IIf are in agreement, within experimental error, with the fast component of the decay of an EPR signal attributable to P-680+. The signal IIf rise kinetics also show good agreement with published values of the pH dependence of the decay of P-680+ measured optically (Conjeaud, H. and Mathis, P. (1980) Biochim. Biophys. Acta 590, 353–359). These results are consistent with a model where the species Z (or D1) responsible for Signal IIf is the immediate electron donor to P-680+ in tris-washed Photosystem II fragments.  相似文献   
8.
One of the fundamental discoveries of W. Arnold was the detection of thermally stimulated light emission from preilluminated photosynthetic material (Arnold and Sherwood (1957) Proc Natl Acad Sci USA 43: 105–114). This phenomenon, called thermoluminescence (TL), is characteristic of a wide range of materials (semiconductors, minerals, inorganic and organic crystals, and complex biological systems such as the photosynthetic apparatus) which share the common ability of storing radiant energy in thermally stabilized trap states.The original discovery of TL in dried chloroplasts later proved to be a phenomenon common to all photosynthetic organisms: photosynthetic bacteria, cyanobacteria, algae and higher plants. Following the pioneering work of Arnold, considerable effort has been devoted to identification and characterization of photosynthetic TL components. This work has firmly established the participation of various redox states of the water-oxidizing complex and the quinone electron acceptors of Photosystem II in the generation of photosynthetic glow curves. Since TL characteristics are very sensitive to subtle changes in redox properties of the involved electron transport components, the TL method has become a powerful tool in probing a wide range of PS II redox reactions. In this paper, we will review the impact of Arnold's work in initiating and promoting TL studies in photosynthesis and will cover the most important developments of this field of research until the present day.Abbreviations Chl chlorophyll - DL delayed luminescence - PS photosystem - TL thermoluminescence  相似文献   
9.
The role of the N-terminus of the extrinsic 33 kDa protein of Photosystem II has been investigated by means of site-directed mutagenesis and cross-linking. Replacement of Asp-9 resulted in a dramatic increase in proteolytic sensitivity leading to the degradation of the protein forming a 31 kDa fragment with an undefined N-terminus. This fragment was unable to restore oxygen evolution. However, the variants of the 33 kDa protein which remained intact could reconstitute oxygen evolution as effectively as the wild-type protein. Cross-linking experiments with a water-soluble carbodiimide revealed that mutagenesis of residue D9 led to the disruption of an intramolecular salt bridge. Therefore we suggest that the N-terminus of the 33 kDa protein is necessary for maintaining the binding ability of the protein to Photosystem II but might not be involved in binding itself.  相似文献   
10.
Recently, it has been suggested (Horton et al. 1992) that aggregation of the light-harvesting a-b complex (LHC II) in vitro reflects the processes which occur in vivo during fluorescence induction and related to the major non-photochemical quenching (qE). Therefore the requirement of this chlorophyll a-b containing protein complex to produce qN was investigated by comparison of two barley mutants either lacking (chlorina f2) or depressed (chlorina104) in LHC II to the wild-type and pea leaves submitted to intermittent light (IL) and during their greening in continuous light. It was observed that qN was photoinduced in the absence of LHC II, i.e. in IL grown pea leaves and the barley mutants. Nevertheless, in these leaves qN had no (IL, peas) or little (barley mutants) inhibitory effect on the photochemical efficiency of QA reduction measured by flash dosage response curves of the chlorophyll fluorescence yield increase induced by a single turn-over flash During greening in continuous light of IL pea leaves, an inhibitory effect on QA photoreduction associated to qN developed as Photosystem II antenna size increased with LHC II synthesis. Utilizing data from the literature on connectivity between PS II units versus antenna size, the following hypothesis is put forward to explain the results summarized above. qN can occur in the core antenna or Reaction Center of a fraction of PS II units and these units will not exhibit variable fluorescence. Other PS II units are quenched indirectly through PS II-PS II exciton transfer which develops as the proportion of connected PS II units increases through LHC II synthesis.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号