首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   24篇
  免费   0篇
  2011年   1篇
  2010年   2篇
  2009年   2篇
  2008年   2篇
  2007年   2篇
  2006年   1篇
  2005年   1篇
  2003年   3篇
  2001年   2篇
  2000年   1篇
  1996年   3篇
  1994年   1篇
  1993年   1篇
  1987年   1篇
  1985年   1篇
排序方式: 共有24条查询结果,搜索用时 442 毫秒
1.
Comparison of antisera from sheep during primary infection and following vaccination and challenge with Trichostrongylus colubriformis, with antisera obtained following primary infection of high- and low-responder guinea pigs, failed to reveal different antigenic patterns in proteins separated from fourth stage larval extracts by two-dimensional electrophoresis and probed by the immunoblot technique.Generally, serum IgG reacted specifically with worm antigens of mol. wt greater than 94,000, whereas protection against challenge infection was elicited most effectively in the guinea pig by fractions in the 67,000–94,000 range.Most distinct separations of larval proteins by SDS-polyacrylamide gel electrophoresis were obtained by extraction of live larvae and the extracts used within 2–3 days.  相似文献   
2.
Liu C  Skogman F  Cai Y  Lowary TL 《Carbohydrate research》2007,342(18):2818-2825
Described is the synthesis of the trisaccharide alpha-D-Manp-(1-->3)-alpha-D-Manp-(1-->3)-beta-D-GlcpNAcO(CH2)8N3, the glycan portion of which corresponds to the 'adaptor-primer' moiety linking the O-chain and core oligosaccharide in the lipopolysaccharide of several Escherichia coli and Klebsiella pneumoniae serotypes. This report represents the first synthesis of this trisaccharide motif, and in the route involved, a key step is a [2+1] coupling of a protected Manp-(1-->3)-alpha-D-Manp glycosyl donor with a GlcpNAc acceptor. The azido group was included in the target to facilitate future preparation of neoglycoconjugates.  相似文献   
3.
The covalent conjugate of oligosaccharide core of Escherichia coli type R4 with tetanus toxoid was prepared using reaction of reductive amination. The neoglycoconjugate was a good immunogen in rabbits yielding a high level of anti-lipopolysaccharide (LPS) antibodies of the IgG class. It was found that antiserum was able to react with the smooth LPS molecules of identical (R4) or related (R1) core type. The reactions were shown in the enzyme-linked immunosorbent assay and the immunoblotting test. Flow cytometry showed that anti-core antibodies reacted with LPS present on intact, live, smooth bacteria labelling more than 90% of cells. The anti-OS R4-TT serum used for in vitro studies showed high endotoxin neutralization activity. The serum inhibited endotoxin-induced tumor necrosis factor alpha and nitric oxide synthesis by the J-774A.1 cell line and attenuated pulmonary retention of YAC-1 cells.  相似文献   
4.
The methyl 6-hydroxyhexanoyl glycoside of lactose was treated with each of 1,2-diaminoethane or hydrazine hydrate, and the corresponding amino amide 4 and acyl hydrazide 13, were treated with each of squaric acid dimethyl, diethyl, dibutyl, and didecyl esters. The monoesters were conjugated to bovine serum albumin (BSA) at different concentrations of hapten using 0.05 and 0.5M pH 9 borate buffer. Maximum loading was achieved faster, and the conjugation efficiency was higher, when the conjugation was conducted at higher concentrations of both hapten and buffer. Conjugations involving haptens 14-17 prepared from hydrazide 13 were generally slower and less efficient than those with compounds 5-8, which were made from amino amide 4. Maintaining pH 9 during conjugation was found to be the most important factor in ensuring that the conjugation was a fast, highly efficient, and reproducible process. When the pH of the conjugation mixture fell during the reaction, resulting in decreased reaction rate or even termination of the conjugation process, the normal course of the conjugation process could be restored by addition of buffer salts. Hydrolysis studies with monoesters formed from amino amide 4 under conjugation conditions showed that decyl ester 8 was the most stable and that the methyl compound 5 was the one most readily hydrolyzed. The stability of monoesters prepared from hydrazide 13 was similar and comparable to the decyl ester prepared from 4. No definite advantage was found for the use of any of the four dialkyl squarate reagents (methyl-, ethyl-, butyl-, and decyl-) for conversion of carbohydrate derivatives to species amenable for conjugation. Nevertheless, dimethyl squarate seemed to be the most convenient reagent because it is a crystalline, easy to handle, and commercially available material with very good reactivity.  相似文献   
5.
An original method was elaborated to construct artificial immunogens in the form of spherical particles with yeast dsRNA in the center and hybrid proteins exposing epitopes of an infectious agent on the surface. The dsRNA and the proteins were linked with spermidine-polyglucin-glutathione conjugates. Particles exposing HIV-1 epitopes were constructed, and their immunogenicity tested.  相似文献   
6.
Samples that are periodically withdrawn from the mixture of a conjugation reaction can be analyzed on a picomolar scale without any work-up or pre-purification using surface-enhanced laser desorption/ionization time-of-flight mass spectrometry (SELDI-TOF MS) in combination with the ProteinChip® System. The technique provides rapid information about the increasing molecular mass of the glycoconjugate formed, thereby allowing termination of the process when the desired incorporation of the ligand onto the carrier protein is achieved. The excess oligosaccharide used at the onset of conjugation can be recovered and used in preparation of a similar neoglycoconjugate. The overall economy of conjugations, which often involve labor-intensive linker-equipped oligosaccharides, can be markedly increased in this way.  相似文献   
7.
The glycan part endows cellular glycoconjugates with significant potential for biological recognition. N-Glycan branches often end with alpha2,3/alpha2,6-sialylation, posing the question whether and how placement of the sialic acid at 3 - or 6 -acceptor positions of galactose has cell biological relevance. As attractive model to study developmental regulation we monitored the expression of alpha2,3/alpha2,6-sialylated determinants in fetal and adult bovine testes and ovaries by lectin histochemistry. Distinct expression patterns were detected in both organ types. Oocyte staining, as a prominent example, was restricted to the presence of alpha2,6-sialylated glycans. Treatment with sialidase abolished binding and thus excluded sulfate esters as lectin targets. We added computer simulations to rationalize the observed evidence for non-random expression of the two closely related sialylgalactose isomers. Extensive molecular mechanics and molecular dynamics calculations reveal that the seemingly minor shift of the glycosidic bond from the alpha2,3 position to the alpha2,6 configuration causes significant shape and flexibility changes. They give each disaccharide its own characteristic meaning as signal in the sugar code.  相似文献   
8.
Several parasitic helminthes, such as the human parasite Schistosoma mansoni, express glycoconjugates that contain terminal GalNAcβ1-4(Fucα1-3)GlcNAcβ-R (LDNF) moieties. These LDNF glycans are dominant antigens of the parasite and are recognized by human dendritic cells via the C-type lectin DC-SIGN. To study the functional role of the LDNF antigen in interaction with the immune system, we have developed an easy chemoenzymatic method to synthesize multivalent neoglycoconjugates carrying defined amounts of LDNF antigens. An acceptor substrate providing a terminal N-acetylglucosamine was prepared by coupling a fluorescent hydrophobic aglycon, 2,6-diaminopyridine (DAP), to N,N′-diacetylchitobiose. By the subsequent action of recombinant Caenorhabditis elegans β1,4-N-acetylgalactosaminyltransferase and human α1,3-fucosyltransferase VI (FucT-VI), this substrate was converted to the LDNF antigen. We showed that human FucT-VI has a relatively high affinity for the unusual substrate GalNAcβ1-4GlcNAc (LDN), and this enzyme was used to produce micromolar amounts of LDNF–DAP. The synthesized LDNF–DAP was coupled to carrier protein via activation of the DAP moiety by diethyl squarate. By varying the molar glycan:protein ratio, neoglycoconjugates were constructed with defined amounts of LDNF, as was determined by MALDI-TOF analysis and ELISA using an anti-LDNF antibody.  相似文献   
9.
Saksena R  Ma X  Kovác P 《Carbohydrate research》2003,338(23):2591-2603
Di-through the pentasaccharide that mimic the upstream terminus of the O-specific polysaccharide of Vibrio cholerae O:1, serotype Ogawa were synthesized in the form of 5-methoxycarbonylpentyl glycosides and linked to BSA using squaric acid diester chemistry. The conjugation reactions were monitored by surface-enhanced laser-desorption/ionization-time-of-flight mass spectrometry (SELDI-TOF MS), which allowed conducting the conjugation of the synthetic oligosaccharides in a controlled way and termination of the reaction when the desired molar hapten-BSA ratio had been reached. This made it possible to prepare, from one hapten in a one-pot reaction, a series of neoglycoconjugates having different, predetermined carbohydrate-carrier ratios. The accuracy of molecular mass determination in SELDI-TOF MS analysis could be increased by using the carrier protein as the internal standard.  相似文献   
10.
The linker-equipped disaccharide, 8-amino-3,6-dioxaoctyl 2,6-dideoxy-2-acetamido-3-O-β-d-galactopyranosyluronate-β-d-glucopyranoside (10), was synthesized in eight steps from acetobromogalactose and ethyl 4,6-O-benzylidene-2-deoxy-2-trichloroacetamido-1-thio-β-d-glucopyranoside. The hydroxyl group present at C-4II in the last intermediate, 8-azido-3,6-dioxaoctyl 4-O-benzyl-6-bromo-2,6-dideoxy-2-trichloroacetamido-3-O-(benzyl 2,3-di-O-benzyl-β-d-galactopyranosyluronate)-β-d-glucopyranoside (9), is positioned to allow further build-up of the molecule and, eventually, construction of the complete hexasaccharide. Global deprotection (910) was done in one step by catalytic hydrogenolysis over palladium-on-charcoal.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号