首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   21篇
  免费   1篇
  国内免费   3篇
  2018年   2篇
  2017年   1篇
  2016年   1篇
  2014年   3篇
  2013年   3篇
  2012年   2篇
  2011年   5篇
  2009年   1篇
  2007年   1篇
  2006年   1篇
  2005年   2篇
  2003年   1篇
  1982年   1篇
  1976年   1篇
排序方式: 共有25条查询结果,搜索用时 359 毫秒
1.

Objectives

Progressive dementia is a rare phenotypic feature of female X-ALD carriers. Even rarer is the additional presence of further risk factors for dementia, such as diabetes, hypothyroidism, and hepatopathy. We report a unique female X-ALD carrier presenting with severe, progressive dementia, paraspasticity, sphincteric dysfunction, and multisystem disease.

Case report

A 79 years-old female with a history of strumectomy, diabetes, hepatopathy, hypothyroidism, arterial hypertension, hiatal hernia, left retinal ablation, ovariectomy, hysterectomy, osteoporosis, bilateral hip endoprosthesis, and neurogenic bladder dysfunction developed slowly progressive cognitive decline since age of 77 years. She had been identified as a female carrier of X-ALD in 12/2010 upon a family screening. At age of 79 years she presented with severe dementia, anxiety, unsteadiness, helplessness, hypertelorism, exaggerated patella tendon reflexes, reduced Achilles tendon reflexes, club feet, contractures of the ankles, the knees, and the hips, and the inability to stay or walk. Cerebral CT showed diffuse atrophy, demyelination periventricularly, small lacunas in the basal ganglia, and small calcifications of the basal ganglia and the temporal lobe on the right side. Differential diagnoses of dementia were considered but were all excluded upon the clinical presentation, blood chemical investigations, imaging studies, and the pattern of neuropsychological deficits.

Conclusions

With progression of the disease manifesting X-ALD carriers may develop progressive severe dementia, severe paraspasticity, and sphincteric dysfunction. Female carriership of X-ALD can be a differential diagnosis of dementia.  相似文献   
2.
The B-box type 2 domain is a prominent feature of a large and growing family of RING, B-box, coiled-coil (RBCC) domain-containing proteins and is also present in more than 1500 additional proteins. Most proteins usually contain a single B-box2 domain, although some proteins contain tandem domains consisting of both type 1 and type 2 B-boxes, which actually share little sequence similarity. Recently, we determined the solution structure of B-box1 from MID1, a putative E3 ubiquitin ligase that is mutated in X-linked Opitz G/BBB syndrome, and showed that it adopted a betabetaalpha RING-like fold. Here, we report the tertiary structure of the B-box2 (CHC(D/C)C(2)H(2)) domain from MID1 using multidimensional NMR spectroscopy. This MID1 B-box2 domain consists of a short alpha-helix and a structured loop with two short anti-parallel beta-strands and adopts a tertiary structure similar to the B-box1 and RING structures, even though there is minimal primary sequence similarity between these domains. By mutagenesis, ESI-FTICR and ICP mass spectrometry, we show that the B-box2 domain coordinates two zinc atoms with a 'cross-brace' pattern: one by Cys175, His178, Cys195 and Cys198 and the other by Cys187, Asp190, His204, and His207. Interestingly, this is the first case that an aspartic acid is involved in zinc atom coordination in a zinc-finger domain, although aspartic acid has been shown to coordinate non-catalytic zinc in matrix metalloproteinases. In addition, the finding of a Cys195Phe substitution identified in a patient with X-linked Opitz GBBB syndrome supports the importance of proper zinc coordination for the function of the MID1 B-box2 domain. Notably, however, our structure differs from the only other published B-box2 structure, that from XNF7, which was shown to coordinate one zinc atom. Finally, the similarity in tertiary structures of the B-box2, B-box1 and RING domains suggests these domains have evolved from a common ancestor.  相似文献   
3.
Chinese hamster ovary (CHO) cells are the main platform for production of biotherapeutics in the biopharmaceutical industry. However, relatively little is known about the metabolism of CHO cells in cell culture. In this work, metabolism of CHO cells was studied at the growth phase and early stationary phase using isotopic tracers and mass spectrometry. CHO cells were grown in fed-batch culture over a period of six days. On days 2 and 4, [1,2-13C] glucose was introduced and the labeling of intracellular metabolites was measured by gas chromatography-mass spectrometry (GC–MS) at 6, 12 and 24 h following the introduction of tracer. Intracellular metabolic fluxes were quantified from measured extracellular rates and 13C-labeling dynamics of intracellular metabolites using non-stationary 13C-metabolic flux analysis (13C-MFA). The flux results revealed significant rewiring of intracellular metabolic fluxes in the transition from growth to non-growth, including changes in energy metabolism, redox metabolism, oxidative pentose phosphate pathway and anaplerosis. At the exponential phase, CHO cell metabolism was characterized by a high flux of glycolysis from glucose to lactate, anaplerosis from pyruvate to oxaloacetate and from glutamate to α-ketoglutarate, and cataplerosis though malic enzyme. At the stationary phase, the flux map was characterized by a reduced flux of glycolysis, net lactate uptake, oxidative pentose phosphate pathway flux, and reduced rate of anaplerosis. The fluxes of pyruvate dehydrogenase and TCA cycle were similar at the exponential and stationary phase. The results presented here provide a solid foundation for future studies of CHO cell metabolism for applications such as cell line development and medium optimization for high-titer production of recombinant proteins.  相似文献   
4.
Gemcitabine (2',2'-difluoro-2'-deoxycytidine; dFdCyd) is one of the anti-metabolites drugs that target DNA replication. We evaluated dFdCyd cytotoxicity and its radiosensitizing ability in human breast cancer cell lines, MCF-7 (wild-type p53) and MDA-MB-231 (mutant-type p53) along with normal mammary epithelial cell line (MCF-12) for comparison. Radiosensitivity and cytotoxicity were measured by the clonogenic survival assays. DNA DSBs was studied by Pulse Field Gel Electrophoresis (PFGE) and cell cycle distribution was analyzed by flow cytometry. MDA-MB-231 cells were the most sensitive to the cytotoxicity of dFdCyd (IC(50) 5 nM) then MCF-7 (IC(50) 10nM), whereas MCF-12 cells were the most resistant to the cytotoxicity of dFdCyd (IC(50) 70 nM). MCF-12 and MCF-7 cell lines did not show any radiosensitization to dFdCyd, whereas the MDA-MB-231 cells showed significantly increased radioresistant to dFdCyd at equimolar concentration (p=0.002) and at IC(50) concentration (p<0.001). The DNA double strand breaks (DSBs) repair showed that dFdCyd neither increases DNA DSBs nor decreases the rate of their repair in MCF-12 and MCF-7 cell lines, while the same treatment in MDA-MB-231 cell line led to decrease the rate of DSBs or increase the rate of DNA repair (p=0.034). Therefore, dFdCyd is a cytotoxic agent, especially in the cancer cells irrespective of having wild-type or mutated p53 protein, but it is not effective as radiosensitizer in the cell lines used in this study. dFdCyd combined with radiation reduces the efficacy of chemo-radiotherapy in p53 mutated cells. Therefore, p53-mutated cancer could be a counter-indication for radiation-gemcitabine combined treatment.  相似文献   
5.
Gonium pectorale O. F. Müll. (Volvocales, Chlorophyta), a colonial 8‐ or 16‐cellular alga, is phylogenetically important as an intermediate form between isogametic unicellular Chlamydomonas and oogamous Volvox. We identified the mating‐type specific gene GpMTD1, from G. pectorale, the first homologue of Chlamydomonas reinhardtii MTD1 (CrMTD1). The GpMTD1 gene was found to be present only in the minus mating‐type locus and was expressed specifically in the gametic phase as is the case for CrMTD1, suggested to participate in development of the minus gametes. This gene is useful as a probe in analyzing the bacterial artificial chromosome (BAC) library for resolving genomic structures of the mating‐type loci in isogamous and oogamous colonial volvocaleans.  相似文献   
6.
We have shown previously that the ubiquitin ligase MID1, mutations of which cause the midline malformation Opitz BBB/G syndrome (OS), serves as scaffold for a microtubule-associated protein complex that regulates protein phosphatase 2A (PP2A) activity in a ubiquitin-dependent manner. Here, we show that the MID1 protein complex associates with mRNAs via a purine-rich sequence motif called MIDAS (MID1 association sequence) and thereby increases stability and translational efficiency of these mRNAs. Strikingly, inclusion of multiple copies of the MIDAS motif into mammalian mRNAs increases production of the encoded proteins up to 20-fold. Mutated MID1, as found in OS patients, loses its influence on MIDAS-containing mRNAs, suggesting that the malformations in OS patients could be caused by failures in the regulation of cytoskeleton-bound protein translation. This is supported by the observation that the majority of mRNAs that carry MIDAS motifs is involved in developmental processes and/or energy homeostasis. Further analysis of one of the proteins encoded by a MIDAS-containing mRNA, namely PDPK-1 (3-phosphoinositide dependent protein kinase-1), which is an important regulator of mammalian target of rapamycin/PP2A signaling, showed that PDPK-1 protein synthesis is significantly reduced in cells from an OS patient compared with an age-matched control and can be rescued by functional MID1. Together, our data uncover a novel messenger ribonucleoprotein complex that regulates microtubule-associated protein translation. They suggest a novel mechanism underlying OS and point at an enormous potential of the MIDAS motif to increase the efficiency of biotechnological protein production in mammalian cells.  相似文献   
7.
8.
Three isomeric ceramide tetrasaccharides — P blood-group active globoside, lacto-N-neotetraosyl ceramide as ABH blood-group precursor, both isolated from human erythrocytes and “asiologanglioside” from human brain as reference standard — and two ceramide pentasaccharides — H blood-group active glycosphingolipid, obtained from blood-group B active ceramide hexasaccharide of human B erythrocytes after α-galactosidase treatment and ceramide pentasaccharide from rabbit erythrocytes with B-like blood-group activity — were investigated by mass spectrometry after permethylation. The carbohydrate moiety exhibits differences not only concerning the sugar sequence but also with regard to the position of some glycosidie linkages: Oligosaccharides containing N-acetylhexosamine substituted at position 4 produce spectra that are distinctly different from those containing C-3 substituted N-acetylhexosamines, thus allowing the differentiation between type 1 and type 2 carbohydrate chains. Moreover, oligosaccharide ions with a hexose at the cleavage site exhibit a fragmentation pattern different from those with a N-acetylhexosamine at the “reducing terminal”. The intensity ratio between parent ion and parent ion — 32 mass units is Q ? 3 in the first case, whereas in the latter case Q is <1. The Q-values are given for 14 oligosaccharide ions. Differences in the composition of the ceramide residues can also be deduced from the mass spectra.  相似文献   
9.
Piwi-interacting RNAs (piRNAs) guide Piwi Argonautes to suppress transposon activity in animal gonads. Known piRNA populations are extremely complex, with millions of individual sequences present in a single organism. Despite this complexity, specific Piwi proteins incorporate piRNAs with distinct nucleotide- and transposon strand-biases (antisense or sense) of unknown origin. Here, we examined the contribution of structural domains in Piwi proteins toward defining these biases. We report the first crystal structure of the MID domain from a Piwi Argonaute and use docking experiments to show its ability to specify recognition of 5′ uridine (1U-bias) of piRNAs. Mutational analyses reveal the importance of 5′ end-recognition within the MID domain for piRNA biogenesis in vivo. Finally, domain-swapping experiments uncover an unexpected role for the MID-PIWI module of a Piwi protein in dictating the transposon strand-orientation of its bound piRNAs. Our work identifies structural features that allow distinguishing individual Piwi members during piRNA biogenesis.  相似文献   
10.
The Saccharomyces cerevisiae MID1 gene product (Mid1) is a stretch-activated Ca(2+)-permeable channel component required for Ca2+ influx and the maintenance of viability of cells exposed to the mating pheromone, alpha-factor. It is composed of 548-amino-acid (aa) residues with four hydrophobic segments, H1 (aa 2-22), H2 (aa 92-111), H3 (aa 337-356) and H4 (aa 366-388). It also has 16 putative N-glycosylation sites. In this study, sequentially truncated Mid1 proteins conjugated with GFP were expressed in S. cerevisiae cells. The truncated protein containing the region from H1 to H3 (Mid1(1-360)-GFP) localized normally in the plasma and endoplasmic reticulum (ER) membranes and complemented the low viability and Ca(2+)-uptake activity of the mid1 mutant, whereas Mid1(1-133)-GFP containing the region from H1 to H2 did not. Mid1(Delta3-22)-GFP lacking the H1 region failed to localize in the plasma membrane. Membrane fractionation showed that Mid1(1-22)-GFP containing only H1 localized in the plasma membrane in the presence of alpha-factor, suggesting that H1 is a signal sequence responsible for the alpha-factor-induced Mid1 delivery to the plasma membrane. The region from H1 to H3 is required for the localization of Mid1 in the plasma and ER membranes. Finally, trafficking of Mid1-GFP to the plasma membrane was dependent on the N-glycosylation of Mid1 and the transporter protein Sec12.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号